②通過對n為奇數(shù)或為偶數(shù)的討論找出的取值范圍有難度. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)y=ax的圖象經(jīng)過平面區(qū)域
x-y+2≤0
2x+y-8≤0
x≥1

(1)求a取值范圍的集合為A;
(2)已知“命題p:?x∈A,使x2+bx+16>0”,寫出¬p,若命題p為真命題,求出b取值范圍.

查看答案和解析>>

洛薩•科拉茨(Lothar Collatz,1910.7.6-1990.9.26)是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半(即
n2
);如果它是奇數(shù),則將它乘3加1(即3n+1),不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為3,按照上述變換規(guī)則,我們得到一個數(shù)列:3,10,5,16,8,4,2,1.對科拉茨(Lothar Collatz)猜想,目前誰也不能證明,更不能否定.現(xiàn)在請你研究:如果對正整數(shù)n(首項)按照上述規(guī)則施行變換(注:1可以多次出現(xiàn))后的第六項為1,則n的所有可能的取值為
 

查看答案和解析>>

(理)已知數(shù)列{an}滿足a1=2,前n項和為Sn,an+1=
pan+n-1(n為奇數(shù))
-an-2n(n為偶數(shù))

(1)若數(shù)列{bn}滿足bn=a2n+a2n+1(n≥1),試求數(shù)列{bn}前3項的和T3;
(2)若數(shù)列{cn}滿足cn=a2n,試判斷{cn}是否為等比數(shù)列,并說明理由;
(3)當p=
1
2
時,對任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

已知等差數(shù)列{an}的前n項和為Sn,且滿足S4=16,S6=36,
(1)求an;
(2)設(shè)λ為實數(shù),對任意正整數(shù)m,n,不等式Sm+Sn>λ•Sm+n恒成立,求實數(shù)λ的取值范圍;
(3)設(shè)函數(shù)f(n)=
an,n為奇數(shù)
f(
n
2
),n為偶數(shù)
cn=f(2n+2+4)(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

(2013•河東區(qū)二模)已知正項數(shù)列{an}中,a1=6,點An(an,
an+1
)
在拋物線y2=x+1上;數(shù)列{bn}中,點Bn(n,bn)在過點(0,1),以方向向量為(1,2)的直線上.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;(文理共答)
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,問是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,說明理由;(文理共答)
(Ⅲ)對任意正整數(shù)n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正數(shù)a的取值范圍.(只理科答)

查看答案和解析>>


同步練習冊答案