(1)求的單調(diào)區(qū)間; 查看更多

 

題目列表(包括答案和解析)

的單調(diào)區(qū)間.

查看答案和解析>>

的單調(diào)遞增區(qū)間。

查看答案和解析>>


⑴若,求的單調(diào)區(qū)間;
在定義域內(nèi)既有極大值又有極小值,求的取值范圍。

查看答案和解析>>

已知

Ⅰ.求的單調(diào)區(qū)間;

Ⅱ.當時,求在定義域上的最大值;

 

查看答案和解析>>

⑴若,求的單調(diào)區(qū)間;

在定義域內(nèi)既有極大值又有極小值,求的取值范圍。

 

查看答案和解析>>

             (執(zhí)信中學(xué)、中山紀念中學(xué)、深圳外語)三校聯(lián)考      09.02

一.選擇題:

二.填空題:9.1;            10.15;          11.      

學(xué)科網(wǎng)(Zxxk.Com)

13.;          14.;          15..

 

 

 

 

 

 

 

 

 

 

 

 

三.解答題:

16.(1)==                2分

==                           4分

                     6分         

(2)==

==               9分

,得                10分

               11分

, 即時,                  12分

 

17.(1)由已知,的取值為 .                     2分                 

,

                     8分

7

8

9

10

的分布列為:

 

 

 

                                                          9分

 

(2)    11分      

        12分

18.(1)由.且           2分

,                      4分

中,令時,T=,

兩式相減得,      6分

.                   8分

(2),                        9分

,,       10分

=2

=,               13分

                 14分     

19、(Ⅰ)在梯形中,,

學(xué)科網(wǎng)(Zxxk.Com)四邊形是等腰梯形,

     2分

平面平面,交線為,

平面              4分

(Ⅱ)解法一、當時,平面,      5分

在梯形中,設(shè),連接,則          6分

,而,             7分

,四邊形是平行四邊形,             8分

平面,平面平面          9分

解法二:當時,平面,                                  

由(Ⅰ)知,以點為原點,所在直線為坐標軸,建立空間直角坐標系,    5分

學(xué)科網(wǎng)(Zxxk.Com),,,

,

平面,

平面共面,

 

 

設(shè).,

,,                     6分

從而要使得:成立,

,解得                  8分

時,平面                 9分

學(xué)科網(wǎng)(Zxxk.Com)(Ⅲ)解法一、取中點,中點,連結(jié),

平面

,,又,

是二面角的平面角.        6分

中,

,.           7分

.               8分

中,由余弦定理得,               9分

即二面角的平面角的余弦值為.

學(xué)科網(wǎng)(Zxxk.Com)

<rp id="rh4pp"></rp>
        •  

          建立空間直角坐標系,則,,

          ,,,

          垂足為. 令,

          ,  

          得,,,即   11分

          ,

          二面角的大小就是向量與向量所夾的角.          12分

                  13分        

                         

          即二面角的平面角的余弦值為.                    14分

           

          20.(1)設(shè) (均不為),

          ,即                   2分

          ,即                  2分

           得  

          動點的軌跡的方程為              6分

          (2)①由(1)得的軌跡的方程為,

          設(shè)直線的方程為,將其與的方程聯(lián)立,消去.         8分

          設(shè)的坐標分別為,則,           9分

                10分

          ②解法一:,  即

            又 .     可得        11分

          故三角形的面積,                 12分

          因為恒成立,所以只要解. 即可解得.      14分

           

          解法二:,(注意到

          又由①有,,

          三角形的面積(以下解法同解法一)

           

          21.(1)函數(shù)的定義域為.               1分

          ;   2分                    

          ,       3分

          則增區(qū)間為,減區(qū)間為.                        4分

          (2)令,由(1)知上遞減,在上遞增,   6分

          ,且,           8分

          時, 的最大值為,故時,不等式恒成立.   9分

          (3)方程.記,則

          .由;由.

          所以上遞減;在上遞增.

          ,       10分

          所以,當時,方程無解;

          時,方程有一個解;

          時,方程有兩個解;

          時,方程有一個解;

          時,方程無解.                                      13分

          綜上所述,時,方程無解;

          時,方程有唯一解;

          時,方程有兩個不等的解.               14分

           

           


          同步練習(xí)冊答案