①函數=的定義域為.值域為,學科網 查看更多

 

題目列表(包括答案和解析)

表示值域為R的函數組成的集合,表示具有如下性質的函數組成的集合:對于函數,存在一個正數,使得函數的值域包含于區(qū)間。例如,當,時,,.現(xiàn)有如下命題:
①設函數的定義域為,則“”的充要條件是“,”;
②若學科網函數,則有最大值和最小值;
③若函數的定義域相同,且,則
④若函數,)有最大值,則.
其中的真命題有      .(寫出所有真命題的序號)

查看答案和解析>>

表示值域為R的函數組成的集合,表示具有如下性質的函數組成的集合:對于函數,存在一個正數,使得函數的值域包含于區(qū)間.例如,當,時,,.現(xiàn)有如下命題:
①設函數的定義域為,則“”的充要條件是“,”;
②學科網函數的充要條件是有最大值和最小值;
③若函數,的定義域相同,且,則
④若函數,)有最大值,則.
其中的真命題有      .(寫出所有真命題的序號)

查看答案和解析>>

(本題滿分14分)

    已知函數.

 。á瘢┤上的單調函數,試確定實數的取值范圍;[來源:學_科_網Z_X_X_K]

 。á颍┣蠛瘮在定義域上的極值;

(Ⅲ)設,求證:.

 

 

查看答案和解析>>

(本小題滿分13分)某市近郊有一塊大約500m×500m的接近正方形的荒地,地方政府準備在此建一個綜合性休閑廣場,首先要建設如圖所示的一個矩形場地,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域將鋪設塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為S平方米.

(1)分別寫出用x表示y和S的函數關系式(寫出函數定義域);[來源:學§科§網]

(2)怎樣設計能使S取得最大值,最大值為多少?

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

二、填空題(每小題4分,共28分)

三、解答題

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同學甲同學恰好投4次達標的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列為

3

4

5

                                                                      (12分)

所以的數學期望為                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如圖所示空間直角坐標系,則

A(0,,0,0),P(0,0,),C(,0),D(,0)

,                  (6分)

易求為平面PAC的一個法向量.

為平面PDC的一個法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值為2.  (11分)

(Ⅲ)設,則

   ,

解得點,即   (13分)

(不合題意舍去)或

所以當的中點時,直線與平面所成角的正弦值為   (15分)

 

21.解:(Ⅰ)設直線的方程為:

,所以的方程為                     (4分)

點的坐標為.

可求得拋物線的標準方程為.                                       (6分)

(Ⅱ)設直線的方程為,代入拋物線方程并整理得    (8分)     

,則

                                      (11分)

時上式是一個與無關的常數.

所以存在定點,相應的常數是.                                     (14分)

 

22.解:(Ⅰ)當               (2分)

上遞增,在上遞減

所以在0和2處分別達到極大和極小,由已知有

,因而的取值范圍是.                                   (4分)

(Ⅱ)當時,

      <strike id="cebaj"><code id="cebaj"></code></strike>

        <font id="cebaj"><td id="cebaj"></td></font>
      1. <td id="cebaj"><optgroup id="cebaj"></optgroup></td>

        市一次模理數參答―3(共4頁)

                                                (7分)

        ,

        上遞減,在上遞增.

        從而上遞增

        因此                           (10分)

        (Ⅲ)假設,即=

                                             (12分)

        ,(x)=0的兩根可得,

        從而有

        ≥2,這與<2矛盾.                                

        故直線與直線不可能垂直.                                               (15分)

         

         

         


        同步練習冊答案