題目列表(包括答案和解析)
設(shè)函數(shù)在處取得極值,且曲線在點處的切線垂直于直線.
(Ⅰ) 求的值;
(Ⅱ)求曲線和直線所圍成的封閉圖形的面積;
(Ⅲ)設(shè)函數(shù),若方程有三個不相等的實根,求的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)的運用。利用導(dǎo)數(shù)求解曲邊梯形的面積,以及求解函數(shù)與方程的根的問題的綜合運用。
(12分)已知函數(shù)在處取得極值,且在點處的切線的斜率為2。
(1)求a、b的值;
(2)求函數(shù)的單調(diào)區(qū)間和極值;
(3)若關(guān)于x的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍。
一、選擇題(每小題5分,共50分)
二、填空題(每小題4分,共28分)
三、解答題
18.解:(Ⅰ)由已有
(4分)
(6分)
(Ⅱ)由(1)且 (8分)
所以 (10分)
(12分)
(14分)
19.解:(Ⅰ)同學(xué)甲同學(xué)恰好投4次達(dá)標(biāo)的概率 (4分)
(Ⅱ)可取的值是
(6分)
(8分)
(10分)
的分布列為
3
4
5
(12分)
所以的數(shù)學(xué)期望為 (14分)
20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC (4分)
(Ⅱ)取CD的中點E,則AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE
建立如圖所示空間直角坐標(biāo)系,則
A(0,,0,0),P(0,0,),C(,0),D(,0)
,, (6分)
易求為平面PAC的一個法向量.
為平面PDC的一個法向量 (9分)
∴cos
故二面角D-PC-A的正切值為2. (11分)
(Ⅲ)設(shè),則
,
解得點,即 (13分)
由得(不合題意舍去)或
所以當(dāng)為的中點時,直線與平面所成角的正弦值為 (15分)
21.解:(Ⅰ)設(shè)直線的方程為:
由得,所以的方程為 (4分)
由得點的坐標(biāo)為.
可求得拋物線的標(biāo)準(zhǔn)方程為. (6分)
(Ⅱ)設(shè)直線的方程為,代入拋物線方程并整理得 (8分)
設(shè)則
設(shè),則
(11分)
當(dāng)時上式是一個與無關(guān)的常數(shù).
所以存在定點,相應(yīng)的常數(shù)是. (14分)
22.解:(Ⅰ)當(dāng)時 (2分)
在上遞增,在上遞減
所以在0和2處分別達(dá)到極大和極小,由已知有
且,因而的取值范圍是. (4分)
(Ⅱ)當(dāng)時,即
|