22(理).已知橢圓的離心率為.直線:與以原點為圓心.以橢圓的短半軸長為半徑的圓相切. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率e=
2
2
,一條準(zhǔn)線方程為x=4,P為準(zhǔn)線上一動點,以原點為圓心,橢圓的焦距|F1F2|為直徑作圓O,直線PF1,PF2與圓O的另一個交點分別為M,N.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)探究直線MN是否經(jīng)過一定點,若存在,求出該點坐標(biāo),若不存在,說明理由.

查看答案和解析>>

已知橢圓的離心率e=
2
2
,一條準(zhǔn)線方程為x=4,P為準(zhǔn)線上一動點,以原點為圓心,橢圓的焦距|F1F2|為直徑作圓O,直線PF1,PF2與圓O的另一個交點分別為M,N.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)探究直線MN是否經(jīng)過一定點,若存在,求出該點坐標(biāo),若不存在,說明理由.

查看答案和解析>>

已知橢圓的一個焦點F1(0,-2
2
)
,對應(yīng)的準(zhǔn)線方程為y=-
9
4
2
,且離心率e滿足
2
3
,e,
4
3
成等比數(shù)列.
(1)求橢圓的方程;
(2)試問是否存在直線l,使l與橢圓交于不同的兩點M、N,且線段MN恰被直線x=-
1
2
平分?若存在,求出l的傾斜角的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點,焦點在x軸上,一個頂點為B(0,-1),且其右焦點到直線x-y+2
2
=0
的距離為3.
(1)求橢圓的方程;
(2)是否存在斜率為k(k≠0),且過定點Q(0,
3
2
)
的直線l,使l與橢圓交于兩個不同的點M、N,且|BM|=|BN|?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

已知橢圓Γ的中心在原點,焦點在x軸上,它的一個頂點B恰好是拋物線y=
1
4
x2
的焦點,離心率等于
2
2
.直線l與橢圓Γ交于M,N兩點.
(Ⅰ)求橢圓Γ的方程;
(Ⅱ)橢圓Γ的右焦點是否可以為△BMN的重心?若可以,求出直線l的方程;若不可以,請說明理由.

查看答案和解析>>

 

 

一、選擇題:(1)-(12)CAADB  BAACD 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時,

當(dāng)時,

當(dāng)時,……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設(shè),必須整改的煤礦數(shù)服從二項分布,從而的數(shù)學(xué)期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復(fù)查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      學(xué)科網(wǎng)(Zxxk.Com)連結(jié),則的中點,

在△中,,………4分

   且平面平面,

 ∴∥平面  ………6分

(2) 因為平面⊥平面,

平面∩平面

 又,所以,⊥平面,

…………8分

,,所以△

等腰直角三角形,

,即………………10分

 又, ∴ 平面,

平面

所以  平面⊥平面  ………………12分

(20)解:設(shè)

,

              ………………6分

(2)由題意得上恒成立。

在[-1,1]上恒成立。

設(shè)其圖象的對稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                             

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵MP=MF2,

∴動點M到定直線的距離等于它到定點F1(1,0)的距離,

∴動點M的軌跡是C為l1準(zhǔn)線,F(xiàn)2為焦點的拋物線  ………………6分

∴點M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設(shè) 

 

,化簡得

    ………………11分

當(dāng)且僅當(dāng) 時等號成立   …………13分

∴當(dāng)的取值范圍是

……14分

 

 


同步練習(xí)冊答案