題目列表(包括答案和解析)
已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項和
【解析】第一問,因為由題設(shè)可知
又 故
或,又由題設(shè) 從而
第二問中,
當時,,時
故時,
時,
分別討論得到結(jié)論。
由題設(shè)可知
又 故
或,又由題設(shè)
從而……………………4分
(2)
當時,,時……………………6分
故時,……8分
時,
……………………10分
綜上可得
設(shè)數(shù)列的各項均為正數(shù).若對任意的,存在,使得成立,則稱數(shù)列為“Jk型”數(shù)列.
(1)若數(shù)列是“J2型”數(shù)列,且,,求;
(2)若數(shù)列既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列是等比數(shù)列.
【解析】1)中由題意,得,,,,…成等比數(shù)列,且公比,
所以.
(2)中證明:由{}是“j4型”數(shù)列,得,…成等比數(shù)列,設(shè)公比為t. 由{}是“j3型”數(shù)列,得
,…成等比數(shù)列,設(shè)公比為;
,…成等比數(shù)列,設(shè)公比為;
…成等比數(shù)列,設(shè)公比為;
如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線的切線,直線交軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為, 直線與軸交點為,連接交拋物線于、兩點,求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為是定點,所以點在定直線
第三問中,設(shè)直線,代入得結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為是定點,所以點在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
如圖,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點。
(I) 證明:平面⊥平面
(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.
【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.
【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面, 又∵面,∴,
由題設(shè)知,∴=,即,
又∵, ∴⊥面, ∵面,
∴面⊥面;
(Ⅱ)設(shè)棱錐的體積為,=1,由題意得,==,
由三棱柱的體積=1,
∴=1:1, ∴平面分此棱柱為兩部分體積之比為1:1
f(x1)-f(x2) | 1+f(x1)f(x2) |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com