(Ⅱ)求的數(shù)學(xué)期望.(要求寫出計算過程或說明道理) 查看更多

 

題目列表(包括答案和解析)

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82  81  79   78  95  88  93  84
乙:92  95  80   75  83  80  90  85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù),并寫出乙組數(shù)據(jù)的中位數(shù);
(Ⅱ)經(jīng)過計算知甲、乙兩人預(yù)賽的平均成績分別為
.
x
=85
,
.
x
=85
,甲的方差為 s2=35.5;現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由;
(Ⅲ)若將預(yù)賽成績中的頻率視為概率,對甲同學(xué)今后3次的數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這3次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82  81  79   78  95  88  93  84
乙:92  95  80   75  83  80  90  85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù),并寫出乙組數(shù)據(jù)的中位數(shù);
(Ⅱ)經(jīng)過計算知甲、乙兩人預(yù)賽的平均成績分別為,,甲的方差為 s2=35.5;現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由;
(Ⅲ)若將預(yù)賽成績中的頻率視為概率,對甲同學(xué)今后3次的數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這3次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82  81  79   78  95  88  93  84
乙:92  95  80   75  83  80  90  85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù),并寫出乙組數(shù)據(jù)的中位數(shù);
(Ⅱ)經(jīng)過計算知甲、乙兩人預(yù)賽的平均成績分別為,,甲的方差為 s2=35.5;現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由;
(Ⅲ)若將預(yù)賽成績中的頻率視為概率,對甲同學(xué)今后3次的數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這3次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82  81  79   78  95  88  93  84
乙:92  95  80   75  83  80  90  85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù),并寫出乙組數(shù)據(jù)的中位數(shù);
(Ⅱ)經(jīng)過計算知甲、乙兩人預(yù)賽的平均成績分別為,,甲的方差為 s2=35.5;現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認(rèn)為選派哪位學(xué)生參加較合適?請說明理由;
(Ⅲ)若將預(yù)賽成績中的頻率視為概率,對甲同學(xué)今后3次的數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這3次成績中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》.其中規(guī)定:居民區(qū)中的PM2.5(PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別

PM2.5(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,15]

4

0.1

第二組

(15,30]

12

0.3

第三組

(30,45]

8

0.2

第四組

(45,60]

8

0.2

第三組

(60,75]

4

0.1

第四組

(75,90)

4

0.1

(1)寫出該樣本的眾數(shù)和中位數(shù)(不必寫出計算過程);

(2)求該樣本的平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由;

(3)將頻率視為概率,對于去年的某2天,記這2天中該居民區(qū)PM2.5的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為,求的分布列及數(shù)學(xué)期望

 

查看答案和解析>>

1―6、AABCCD   7―12、DBBDCA

13、(lg2,+∞)   14、0, 15、-1

16、(文)-10,(理)(2-i)/3

19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

    ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

    ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

    ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

(2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

    ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

    ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

    ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

    即二面角B―A1D―A的大小為                   ………………10分

   

  • <fieldset id="yqsyu"><acronym id="yqsyu"></acronym></fieldset>

    (1)同解法一……………………4分

    (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

    AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

    建立如圖所示的坐標(biāo)系得

    C(0,0,0) B(2,0,0)  A(0,2,0)

    C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

    D(0,0,1)  E(1,0,2)………………6分

      設(shè)平面A1BD的法向量為n

           …………8分

    平面ACC1A1­的法向量為m=(1,0,0)  …………9分

    即二面角B―A1D―A的大小為………………10分

    20.(文) 解:將各項指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

    (1)由于“至少有兩項指標(biāo)不合格”,與“至多1項指標(biāo)不合格”對立,故這個電子

    元件不能出廠的概率為  ………………6分

    (2)直到五項指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項檢驗(yàn)中恰有1項

    檢驗(yàn)不合格. 故直到五項指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

    ……………………12分

    (理)  解:(Ⅰ)

     

    1

    2

    3

    4

    5

    6

    7

    8

    9

    P

    (Ⅱ)

    21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-)且k≠±時,直線與雙曲線交于二點(diǎn),反之亦然.

    (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

    22.解:(1)  ………………2分

        由已知條件得:    ………………4分

           (2)………………5分

        ………………6分

        令    ………………7分

        ∴函數(shù)的單調(diào)遞增區(qū)間為

        當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

        綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

        函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

       (3)由(1)得: 

        …………10分

        令………………11分

       

        即:……………………14分

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    數(shù)學(xué)2參考答案(2007年10月17日

    1―6、AABCCD   7―12、DBBDCA

    13、(lg2,+∞)   14、0, 15、-1

    16、(文)-10,(理)(2-i)/3

    19.解:(1)∵A1B1C1-ABC為直三棱住  ∴CC1⊥底面ABC  ∴CC1⊥BC

        ∵AC⊥CB   ∴BC⊥平面A1C1CA………………2分

        ∴BC長度即為B點(diǎn)到平面A1C1CA的距離

        ∵BC=2  ∴點(diǎn)B到平面A1C1CA的距離為2……………………4分

    (2)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

        ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

        ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角  ……………………6分

        平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

        ∴CG=2,DC=1 在直角三角形CDG中,       ……9分

        即二面角B―A1D―A的大小為                   ………………10分

       

      • (1)同解法一……………………4分

        (2)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2

        AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn)

        建立如圖所示的坐標(biāo)系得

        C(0,0,0) B(2,0,0)  A(0,2,0)

        C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

        D(0,0,1)  E(1,0,2)………………6分

          設(shè)平面A1BD的法向量為n

               …………8分

        平面ACC1A1­的法向量為m=(1,0,0)  …………9分

        即二面角B―A1D―A的大小為………………10分

        20.(文) 解:將各項指標(biāo)合格分別記作A1,A2,A3,A4,A5,則

        (1)由于“至少有兩項指標(biāo)不合格”,與“至多1項指標(biāo)不合格”對立,故這個電子

        元件不能出廠的概率為  ………………6分

        (2)直到五項指標(biāo)全部檢查完才能確定該元件是否出廠,表明前4項檢驗(yàn)中恰有1項

        檢驗(yàn)不合格. 故直到五項指標(biāo)全部檢查完才能確定該元件是否出廠的概率為

        ……………………12分

        (理)  解:(Ⅰ)

        1

        2

        3

        4

        5

        6

        7

        8

        9

        P

        (Ⅱ)

        21.解:(1)當(dāng)k=0時,y=1與3x2-y2=1有二公共點(diǎn);若k≠0,則x=(y-1)代入3x2-y2=1有(3-k2)y2-6y+3-k2=0,顯然k2=3時,直線與雙曲線漸近線平行,無二公共點(diǎn),所以k2≠3.由y∈R,所以Δ=36-4(3-k2)2≥0,所以0<k2<6,且k2≠3.綜合知k≠(-,)且k≠±時,直線與雙曲線交于二點(diǎn),反之亦然.

        (2)設(shè)A(x1,y1)、B(x2,y2),消去y,得(3-k2)x2-2kx-2=0的二根為x1、x2,所以x1+x2=,x1x2=,由(1)知y1y2=1,因?yàn)閳A過原點(diǎn),以AB為直徑,所以x1x2+y1y2=0,所以k2=1,即k=±1為所求的值.

        22.解:(1)  ………………2分

            由已知條件得:    ………………4分

               (2)………………5分

            ………………6分

            令    ………………7分

            ∴函數(shù)的單調(diào)遞增區(qū)間為

            當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為(0,2)…………8分

            綜上:當(dāng)m>0時,函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時,

            函數(shù)的單調(diào)遞增區(qū)間為(0,2)………………9分

           (3)由(1)得: 

            …………10分

            令………………11分

           

            即:……………………14分

         


        同步練習(xí)冊答案
        • <bdo id="yqsyu"><acronym id="yqsyu"></acronym></bdo>
          <cite id="yqsyu"></cite>
        • <noscript id="yqsyu"></noscript>
            <center id="yqsyu"><tbody id="yqsyu"></tbody></center>
                  <dd id="yqsyu"></dd>