③是兩直線平行的充分不必要條件, 20090515其中正確結(jié)論的序號是 (把所有正確結(jié)論的序號都填上) 查看更多

 

題目列表(包括答案和解析)

給出下列命題
①設(shè)a、b為非零實(shí)數(shù),則“a<b”是“”的充分不必要條件;
②命題P:垂直于同一條直線的兩直線平行,命題q:垂直于同一條直線的兩平面平行,則命題p∨q為真命題;
③命題“?r∈R,sinr<1”的否定為“?x∈R,sinx>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“若x+y<5,則x<2且y<3”.
其中真命題的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

給出下列命題
①設(shè)a、b為非零實(shí)數(shù),則“a<b”是“數(shù)學(xué)公式”的充分不必要條件;
②命題P:垂直于同一條直線的兩直線平行,命題q:垂直于同一條直線的兩平面平行,則命題p∨q為真命題;
③命題“?r∈R,sinr<1”的否定為“?x0∈R,sinx0>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“若x+y<5,則x<2且y<3”.
其中真命題的個數(shù)有


  1. A.
    4個
  2. B.
    3個
  3. C.
    2個
  4. D.
    1個

查看答案和解析>>

給出下列命題
①設(shè)a、b為非零實(shí)數(shù),則“a<b”是“
1
a
1
b
”的充分不必要條件;
②命題P:垂直于同一條直線的兩直線平行,命題q:垂直于同一條直線的兩平面平行,則命題p∨q為真命題;
③命題“?r∈R,sinr<1”的否定為“?x0∈R,sinx0>1”;
④命題“若x≥2且y≥3,則x+y≥5”的逆否命題為“若x+y<5,則x<2且y<3”.
其中真命題的個數(shù)有( 。
A、4個B、3個C、2個D、1個

查看答案和解析>>

給出下列4個命題:

①“0<x<5”是“不等式|x-2|<3”成立的充分不必要條件;

②直線l1:y=2x-5到直線l2:y=-x+5的角是;

③在曲線y=4x-x2上取兩點(diǎn)A(4,0)、B(2,4),若曲線上一點(diǎn)P處的切線恰好平行于弦AB,則點(diǎn)P的坐標(biāo)為(3,3);

④把4本不同的書分成三堆,共有6種不同分法.

其中錯誤的命題有_______________.(把你認(rèn)為錯誤命題的序號都填上)

查看答案和解析>>

給出下列4個命題:

①“0<x<5”是“不等式|x-2|<3”成立的充分不必要條件;

②直線l1:y=2x-5到直線l2:y=x+5的角是;

③在曲線y=4x-x2上取兩點(diǎn)A(4,0)、B(2,4),若曲線上一點(diǎn)P處的切線恰好平行于弦AB,則點(diǎn)P的坐標(biāo)為(3,3);

④把4本不同的書分成三堆,共有6種不同分法.

其中錯誤的命題有_____________.(把你認(rèn)為錯誤命題的序號都填上)

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.20     15.    16.①③④

三、解答題

17.解:(1)由題設(shè)

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設(shè)圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設(shè)知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

證明:(1)取AC中點(diǎn)O,

      <source id="ph3fs"></source>
          <source id="ph3fs"></source>
            <i id="ph3fs"></i>

              ∴PO⊥AC,

              又∵面PAC⊥面ABC,PO面PAC,

              ∴PO⊥面ABC,……………………2分

              連結(jié)OD,則OD//BC,

              ∴DO⊥AC,

              由三垂線定理知AC⊥PD.……………………4分

              (2)連接OB,過E作EF⊥OB于F,

              又∵面POB⊥面ABC,

              ∴EF⊥面ABC,

              過F作FG⊥AC,連接EG,

              由三垂線定理知EG⊥AC,

              ∴∠EGF即為二面角E―AC―B的平面角…………6分

              ……………………9分

              (3)由題意知

              .…………………………12分

              20.(本小題滿分12分)

              解:(1)設(shè)“生產(chǎn)一臺儀器合格”為事件A,則

              ……………………2分

              (2)每月生產(chǎn)合格儀器的數(shù)量可為3,2,1,0,則

              所以的分布列為:

              3

              2

              1

              0

              P

               

              的數(shù)學(xué)期望

              …………9分

              (3)該廠每生產(chǎn)一件儀器合格率為,

              ∴每臺期望盈利為(萬元)

              ∴該廠每月期望盈利額為萬元……………………12分

              21.(本小題滿分12分)

              解:(1)設(shè)

              ,

              ,

              …………………………3分

              ,這就是軌跡E的方程.……………………4分

              (2)當(dāng)時,軌跡為橢圓,方程為①…………5分

              設(shè)直線PD的方程為

              代入①,并整理,得

                 ②

              由題意,必有,故方程②有兩上不等實(shí)根.

              設(shè)點(diǎn)

              由②知,………………7分

              直線QF的方程為

              當(dāng)時,令,

              代入

              整理得,

              再將代入,

              計(jì)算,得x=1,即直線QF過定點(diǎn)(1,0)

              當(dāng)k=0時,(1,0)點(diǎn)……………………12分

              22.(本小題滿分14分)

              解:(1)

              由題知,即a-1=0,∴a=1.……………………………2分

              x≥0,∴≥0,≥0,

              又∵>0,∴x≥0時,≥0,

              上是增函數(shù).……………………4分

              (Ⅱ)由(Ⅰ)知

              下面用數(shù)學(xué)歸納法證明>0.

              ①當(dāng)n=1時,=1>0成立;

              ②假設(shè)當(dāng)時,>0,

              上是增函數(shù),

              >0成立,

              綜上當(dāng)時,>0.……………………………………6分

              >0,1+>1,∴>0,

              >0,∴,…………………………………8分

              =1,∴≤1,綜上,0<≤1.……………………………9分

              (3)∵0<≤1,

              ,

              ,

              ,

              >0,………………………………………11分

              =??……

                =n.……………………………12分

              ∴Sn++…+

              +()2+…+()n

              ==1.

              ∴Sn<1.………………………………………………………………14分

               

               

               


              同步練習(xí)冊答案