10.設(shè)F1.F2分別是橢圓(a>b>0)的左.右焦點(diǎn).與直線y=b相切的⊙F2交橢圓于點(diǎn)E.E恰好是直線EF1與⊙F2的切點(diǎn).則橢圓的離心率為 查看更多

 

題目列表(包括答案和解析)

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),若橢圓C上的一點(diǎn)A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個不同的點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個不同的點(diǎn),Q是橢圓C上不同于M,N的任意一點(diǎn),若直線QM,QN的斜率分別為KQM•KQN.問:“點(diǎn)M,N關(guān)于原點(diǎn)對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個動點(diǎn),點(diǎn)A(5,0),求線段AP中點(diǎn)M的軌跡方程.

查看答案和解析>>

設(shè)F1、F2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使|OP|=|OF1|(O為原點(diǎn)),且|PF1|=
3
|PF2|
,則雙曲線的離心率為( 。
A、
3
-1
2
B、
3
-1
C、
3
+1
2
D、
3
+1

查看答案和解析>>

設(shè)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1
的左、右焦點(diǎn),若雙曲線上存在點(diǎn)A,使∠F1AF2=90°,且|AF1|=3|AF2|,則雙曲線的離心率為
 

查看答案和解析>>

設(shè)F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),過F1且斜率為k的直線l與E相交于A、B兩點(diǎn),且|AF2|、|AB|、|BF2|成等差數(shù)列.
(1)若a=1,求|AB|的值;
(2)若k=1,設(shè)點(diǎn)P(0,-1)滿足|PA|=|PB|,求橢圓E的方程.

查看答案和解析>>


同步練習(xí)冊答案