的直線與拋物線 相交于 A.B 兩點.O 為坐標原點.則 . 查看更多

 

題目列表(包括答案和解析)

 直線與拋物線相交于A,B兩點,F(xiàn)是拋物線的焦點。

(1)求證:“如果直線過點T(3,0),那么”是真命題

(2)設是拋物線上三點,且成等差數(shù)列。當AD的垂直平分線與軸交于點T(3,0)時,求點B的坐標。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知點(0,1),,直線、都是圓 的切線(點不在軸上). 以原點為頂點,且焦點在軸上的拋物線C恰好過點P.

(1)求拋物線C的方程;

(2)過點(1,0)作直線與拋物線C相交于兩點,問是否存在定點使為常數(shù)?若存在,求出點的坐標及常數(shù);若不存在,請說明理由.

查看答案和解析>>

(9分)已知動直線與拋物線相交于A點,動點B的坐標是

(Ⅰ)求線段AB的中點M的軌跡的方程;

(Ⅱ)若過點N1,0的直線交軌跡、兩點,點是坐標原點,若面積為4,求直線的傾斜角.

查看答案和解析>>

拋物線y=g(x)經(jīng)過點O(0,0)、A(m,0)與點P(m+1,m+1),其中m>n>0,b<a,設函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值.
(1)用m,x表示f(x)=0.
(2)比較a,b,m,n的大。ㄒ蟀磸男〉酱笈帕校
(3)若m+n≤2
2
,且過原點存在兩條互相垂直的直線與曲線y=(x)均相切,求y=f(x)

查看答案和解析>>

拋物線y=-
12
x2
與過點M(0,-1)的直線l相交于A、B兩點,O為坐標原點,若直線OA和OB的斜率之和為2,求直線l的方程以及線段AB的長.

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A A

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

,.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小題滿分12分)

解:以A點為原點,AB為軸,AD為軸,AD

軸的空間直角坐標系,如圖所示.則依題意可知相

關各點的坐標分別是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N(,,).                                  2分

   ∴ (0,,),,0,0),,).    4分

   ∴ ,.∴ ,

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)設平面NBC的法向量為,),則.且又易知

   ∴   即    ∴

   令,則,0,).                                           9分

   顯然,(0,,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小題滿分12分)

解:(Ⅰ)由題意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上問知 ,即是關于的三次函數(shù),設

,則

,解得  或 (不合題意,舍去).

顯然當  時,;當  時,

∴ 當年產(chǎn)量   時,隨機變量  的期望  取得最大值.              12分

(20)(本小題滿分12分)

解:(Ⅰ)設,)是函數(shù) 的圖象上任意一點,則容易求得點關于直線  的對稱點為),依題意點,)在的圖象上,

. ∴ .            2分

 的一個極值點,∴ ,解得

∴ 函數(shù)  的表達式是 ).            4分

∵ 函數(shù)  的定義域為(), ∴  只有一個極值點,且顯然當

時,;當時,

∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

(Ⅱ)由 ,

,∴      9分

 在 時恒成立.

∴ 只需求出  在   時的最大值和  在

 時的最小值,即可求得  的取值范圍.

(當  時);

(當  時).

∴   的取值范圍是 .                                         12分

 

(21)(本小題滿分12分)

解:(Ⅰ)∵

設O關于直線

對稱點為的橫坐標為

又易知直線  解得線段的中點坐標

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設直線AN的方程為 ,代入 并整理得:. 

設點,,則

由韋達定理得 ,.                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點的橫坐標

,代入,并整理得 .   10分

再將韋達定理的結果代入,并整理可得

∴ 直線ME與軸相交于定點(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ ,,且 N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,……,,

將這個同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步練習冊答案