已知函數(shù) 與 ( 為常數(shù))的圖象關于直線 對稱.且 是 的一個極值點. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為常數(shù))的圖象關于直線對稱,且的一個極值點.

   (I)求出函數(shù)的表達式和單調(diào)區(qū)間;

   (II)若已知當時,不等式恒成立,求的取值范圍.

查看答案和解析>>

已知函數(shù)為常數(shù))的圖象關于直線x=1對稱,

且x=1是的一個極值點.

      (1)求出函數(shù)的表達式和單調(diào)區(qū)間;

      (2)若已知當時,不等式恒成立,

求m的取值范圍. (注:若)。

查看答案和解析>>

已知函數(shù)f(x)=msinx+ncosx,且f(
π
4
)
是它的最大值,(其中m、n為常數(shù)且mn≠0)給出下列命題:
f(x+
π
4
)
是偶函數(shù);
②函數(shù)f(x)的圖象關于點(
4
,0)
對稱;
f(-
4
)
是函數(shù)f(x)的最小值;
④記函數(shù)f(x)的圖象在y軸右側與直線y=
m
2
的交點按橫坐標從小到大依次記為P1,P2,P3,P4,…,則|P2P4|=π
m
n
=1

其中真命題的是
 
(寫出所有正確命題的編號)

查看答案和解析>>

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.
(1)求實數(shù)a的值;
(2)若關于x的不等式
x-m
g(x)
x
對任意不等于1的正實數(shù)都成立,求實數(shù)m的取值集合.

查看答案和解析>>

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在其與兩坐標軸的交點處的切線相互平行.
(1)求實數(shù)a的值;
(2)若關于x的不等式數(shù)學公式對任意不等于1的正實數(shù)都成立,求實數(shù)m的取值集合.

查看答案和解析>>

 

一.選擇題(本大題共12小題,每小題5分,共60分.)

D C B B C       D C A C C       A A

二.填空題(本大題共4小題,每小題4分,共16分.)

(13)       (14)        (15)―1        (16)

三.解答題

(17)(本小題滿分12分)

解:(Ⅰ):

          3分

依題意,的周期,且,∴ .∴

.                                            5分

[0,], ∴ ,∴ ≤1,

  ∴ 的最小值為 ,即    ∴

                                           7分

(Ⅱ)∵ =2, ∴

又 ∵ ∠∈(0,), ∴ ∠.                                  9分

△ABC中,∵ ,

.解得

又 ∵ 0, ∴ .                                 12分

(18)(本小題滿分12分)

解:以A點為原點,AB為軸,AD為軸,AD

軸的空間直角坐標系,如圖所示.則依題意可知相

關各點的坐標分別是A(0,0,0),B(,0,0),

C(,1,0),D(0,1,0),S(0,0,1),

   ∴ M(,1,0),N(,).                                  2分

   ∴ (0,),,0,0),,).    4分

   ∴ ,.∴

   ∴ MN ⊥平面ABN.                                                      6分

   (Ⅱ)設平面NBC的法向量為,),則,.且又易知

   ∴   即    ∴

   令,則,0,).                                           9分

   顯然,(0,)就是平面ABN的法向量.

   ∴ 二面角的余弦值是.                                    12分

(19)(本小題滿分12分)

解:(Ⅰ)由題意得

 

);                             3分

同理可得);

).                           5分

(Ⅱ)       8分

(Ⅲ)由上問知 ,即是關于的三次函數(shù),設

,則

,解得  或 (不合題意,舍去).

顯然當  時,;當  時,

∴ 當年產(chǎn)量   時,隨機變量  的期望  取得最大值.              12分

(20)(本小題滿分12分)

解:(Ⅰ)設)是函數(shù) 的圖象上任意一點,則容易求得點關于直線  的對稱點為),依題意點,)在的圖象上,

. ∴ .            2分

 的一個極值點,∴ ,解得

∴ 函數(shù)  的表達式是 ).            4分

∵ 函數(shù)  的定義域為(), ∴  只有一個極值點,且顯然當

時,;當時,

∴ 函數(shù)  的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.           6分

(Ⅱ)由

,∴      9分

 在 時恒成立.

∴ 只需求出  在   時的最大值和  在

 時的最小值,即可求得  的取值范圍.

(當  時);

(當  時).

∴   的取值范圍是 .                                         12分

 

(21)(本小題滿分12分)

解:(Ⅰ)∵

設O關于直線

對稱點為的橫坐標為

又易知直線  解得線段的中點坐標

為(1,-3).∴

∴ 橢圓方程為 .                                           5分

(Ⅱ)顯然直線AN存在斜率,設直線AN的方程為 ,代入 并整理得:. 

設點,則

由韋達定理得 .                       8分

∵ 直線ME方程為 ,令,得直線ME與x軸的交點的橫坐標

,代入,并整理得 .   10分

再將韋達定理的結果代入,并整理可得

∴ 直線ME與軸相交于定點(,0).                                  12分

(22)(本小題滿分14分)

證明:(Ⅰ)∵ ,,且 N?),

∴  .                                                            2分

去分母,并整理得 .                      5分

,,……,

將這個同向不等式相加,得 ,∴ .    7分

(Ⅱ)∵ ,∴ .                     9分

.即 .                        11分

,即

.                                                14分

 

 


同步練習冊答案