()若記.那么 查看更多

 

題目列表(包括答案和解析)

(5分)(2011•湖北)若實(shí)數(shù)a,b滿足a≥0,b≥0,且ab=0,則稱a與b互補(bǔ),記φ(a,b)=﹣a﹣b那么φ(a,b)=0是a與b互補(bǔ)的(          )

A.必要不充分條件 B.充分不必要的條件
C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

(5分)(2011•湖北)若實(shí)數(shù)a,b滿足a≥0,b≥0,且ab=0,則稱a與b互補(bǔ),記φ(a,b)=﹣a﹣b那么φ(a,b)=0是a與b互補(bǔ)的(          )
A.必要不充分條件B.充分不必要的條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

(2011•湖北)若實(shí)數(shù)a,b滿足a≥0,b≥0,且ab=0,則稱a與b互補(bǔ),記φ(a,b)=﹣a﹣b那么φ(a,b)=0是a與b互補(bǔ)的( 。

A.必要不充分條件B.充分不必要的條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

我們知道,如果集合,那么S的子集A的補(bǔ)集為。類似地,對于集合A、B,我們把集合叫做集合A與B的差集,記作A-B。
(1)若A={1,2,3,4},B={3,4,5,6},求A-B;
(2)在下列各圖中用陰影表示集合A-B。
(3)若集合,集合,且A-B=,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

19、我們知道,如果集合A⊆S,那么S的子集A的補(bǔ)集為CSA={x|x∈S,且x∉A}.類似地,對于集合A、B,我們把集合{x|x∈A,且x∉B}叫做集合A與B的差集,記作A-B.
據(jù)此回答下列問題:
(1)若A={1,2,3,4},B={3,4,5,6},求A-B;
(2)在下列各圖中用陰影表示集合A-B.

查看答案和解析>>

 

一、選擇題:ADBAA    BCCDB

二、填空題

11.;        12. ;          13

14.()③⑤  ()②⑤              15. (;    () 0

三、解答題:

16.解:(1)

                                                                …………5分

成等比數(shù)列,知不是最大邊

                                                    …………6分

(2)由余弦定理

ac=2                                                                                                        …………11分

=                                                                          …………12分

17.解:(Ⅰ)

(Ⅱ)

1當(dāng)時(shí),則.此時(shí)輪船更安全.

2當(dāng)時(shí),則.此時(shí)輪船和輪船一樣安全.

3當(dāng)時(shí),則.此時(shí)輪船更安全.

解:方法一

(Ⅰ)取的中點(diǎn),連結(jié),由,又,故,所以即為二面角的平面角.

在△中,,

由余弦定理有

,

所以二面角的大小是.(6分)

(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直線上,所以點(diǎn)到平面的距離即為△的邊上的高.

.                             …(12分)

 

19.解: (Ⅰ)∵△ABC的邊長為2a,DAB上,則ax2a,?

∵△ADE面積等于△ABC面積的一半,

x?AEsin60°=?2a2,?

解得AE,?

在△ADE中,由余弦定理:?

y2x2?cos60°,?

y2x22a2

y  (ax2a)?

(Ⅱ)證明:∵y  (ax2a),令x2t,則a2t4a2

y,設(shè)ft)=ta2t4a2)?

當(dāng)t∈(a2,2a2)時(shí),任取a2t1t22a2,?

ft1)-ft2)=(t1)-(t2

=(t1t2)?,?

a2t1t22a2?

t1t2>0,t1t2>0,t1t24a4<0?

ft1)-ft2)>0,即ft1)>ft2)?

fx)在(a2,2a2)上是減函數(shù).?

同理可得,fx)在(2a2,4a2)上是增函數(shù).?

又∵f2a2)=4a2,fa2)=f4a2)=5a2,當(dāng)t2a2時(shí),fx)有最小值,即xa時(shí),y有最小值,且ymin=a,此時(shí)DEBCADa;當(dāng)ta24a2時(shí),fx)有最大值,即xa2a時(shí),y有最大值,且ymaxa,此時(shí)DEABAC邊上的中線.?

 

20.解:(Ⅰ)∵,∴,

又∵,∴

,

∴橢圓的標(biāo)準(zhǔn)方程為.                                      ………(3分)

當(dāng)的斜率為0時(shí),顯然=0,滿足題意,

當(dāng)的斜率不為0時(shí),設(shè)方程為,

代入橢圓方程整理得:

,,

         

,從而

綜合可知:對于任意的割線,恒有.                ………(8分)

(Ⅱ),

即:

當(dāng)且僅當(dāng),即(此時(shí)適合于的條件)取到等號(hào).

∴三角形△ABF面積的最大值是.                 ………………………………(13分)

21.解:(Ⅰ)由

故x>0或x≤-1

f(x)定義域?yàn)?sub>                          …………………………(4分)

(Ⅱ)

下面使用數(shù)學(xué)歸納法證明:

①在n=1時(shí),a1=1,<a1<2,則n=1時(shí)(*)式成立.

②假設(shè)n=k時(shí)成立,

要證明:

只需

只需(2k+1)3≤8k(k+1)2

只需1≤4k2+2k

而4k2+2k≥1在k≥1時(shí)恒成立.

只需證:4k2+11k+8>0,而4k2+11k+8>0在k≥1時(shí)恒成立.

于是:

因此得證.

綜合①②可知(*)式得證.從而原不等式成立.                     ………………9分

(Ⅲ)要證明:

由(2)可知只需證:

…………(**)

下面用分析法證明:(**)式成立。

要使(**)成立,只需證:

即只需證:(3n-2)3n>(3n-1)3(n-1)

只需證:2n>1

而2n>1在n≥1時(shí)顯然成立.故(**)式得證:

于是由(**)式可知有:

因此有:

                     ……………………………………(13分)

 


同步練習(xí)冊答案