又由得或. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

【解析】第一問中利用導數(shù)

又f(x)在x=1處取得極值2,所以,

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導,又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調(diào)遞增,當時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

 

查看答案和解析>>

已知函數(shù)f(x)=,為常數(shù)。

(I)當=1時,求f(x)的單調(diào)區(qū)間;

(II)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),求的取值范圍。

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問中,利用當a=1時,f(x)=,則f(x)的定義域是然后求導,,得到由,得0<x<1;由,得x>1;得到單調(diào)區(qū)間。第二問函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),則在區(qū)間[1,2]上恒成立,即即,或在區(qū)間[1,2]上恒成立,解得a的范圍。

(1)當a=1時,f(x)=,則f(x)的定義域是

。

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函數(shù),在(1,上是減函數(shù)!6分

(2)。若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)函數(shù),

在區(qū)間[1,2]上恒成立!,或在區(qū)間[1,2]上恒成立。即,或在區(qū)間[1,2]上恒成立。

又h(x)=在區(qū)間[1,2]上是增函數(shù)。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或。

 

查看答案和解析>>

甲、乙兩位同學玩游戲,對于給定的實數(shù)a1,按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各擲一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把a1乘以2后再減去12;如果出現(xiàn)一個正面朝上,一個反面朝上,則把a1除以2后再加上12,這樣就可以得到一個新的實數(shù)a2,對實數(shù)a2仍按上述方法進行一次操作,又得到一個新的實數(shù)a3,當a3>a1,甲獲勝,否則乙獲勝,若甲獲勝的概率為
3
4
,則a1的取值范圍是( 。
A、(-∞,12]
B、[24,+∞)
C、(12,24)
D、(-∞,12]∪[24,+∞)

查看答案和解析>>

甲、乙兩位同學玩游戲,對于給定的實數(shù)a1,按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各拋一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把a1乘以2后再減去12;如果出現(xiàn)一個正面朝上,一個反面朝上,則把a1除以2后再加上12,這樣就可得到一個新的實數(shù)a2.對a2仍按上述方法進行一次操作,又得到一個新的實數(shù)a3.當a3>a1時,甲獲勝,否則乙獲勝.若甲獲勝的概率為
34
,求a1的取值范圍.

查看答案和解析>>

甲、乙兩位同學玩游戲,對于給定的實數(shù)a1,按下列方法操作一次產(chǎn)生一個新的實數(shù):由甲、乙同時各拋一枚均勻的硬幣,如果出現(xiàn)兩個正面朝上或兩個反面朝上,則把a1乘以2后再減去12;如果出現(xiàn)一個正面朝上,一個反面朝上,則把a1除以2后再加上12,這樣就可得到一個新的實數(shù)a2,對a2仍按上述方法進行一次操作,又得到一個新的實數(shù)a3,當a3>a1時,甲獲勝,否則乙獲勝.若甲獲勝的概率為
34
,則a1的取值范圍是
(-∞,12]∪[24,+∞)
(-∞,12]∪[24,+∞)

查看答案和解析>>


同步練習冊答案