11.已知函數(shù)與函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則的最大值為   
(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是   

查看答案和解析>>

已知函數(shù)與函數(shù)的圖像關于直線對稱,則函數(shù)的單調遞增區(qū)間是            

 

查看答案和解析>>

已知函數(shù)與函數(shù)g(x)=alnx在點(1,0)處有公共的切線,設F(x)=f(x)-mg(x)(m≠0).
(1)求a的值
(2)求F(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

已知函數(shù)與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則的最大值為   
(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是   

查看答案和解析>>

已知函數(shù)與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則的最大值為   
(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是   

查看答案和解析>>

 

說明:

    一、本解答給出一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分標準制訂相應的評分細則。

    二、對計算題當考生的解答在某一步出現(xiàn)錯誤時,如果后續(xù)部分的解答未改變該題的內容和難度,可視影響的程度決定給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后續(xù)部分的解答有較嚴重的錯誤,就不再給分。

    三、解答右端所注分數(shù),表示考生正確做到這一步應得累加分。

    四、只給整數(shù)分數(shù),選擇題和填空題不給中間分數(shù)。

一、選擇題:每小題5分,滿分60分。

1―5 DBADD    6―10 AAACA    11―12 BC

二、填空題:每題5分,共20分

13.    14.14    15.1    16.②③

三、解答題(滿分70分)

17.本小題主要考查正弦定理、余弦定理,三角形面積公式等基礎知識。

    解:(1)

                                    (5分)

   (2)

   

    得                                                             (8分)

    (10分)

18.本小題主要考查概率的基本知識與分類思想,獨立重復試驗概率問題,考查運用數(shù)學知

識分析問題解決問題的能力。

解:(1)需賽七局結束比賽說明前六局3:3打平,即在第三、第四、第五、第六局中乙恰贏一局,設需賽七局結束比賽為事件A,

                                               (5分)

   (2)設甲獲勝為事件B,則甲獲勝包括甲以4:2獲勝和甲以4:3獲勝兩種情況:

                           (12分)

19.本小題主要考查正四棱柱中線線位置關系、線面垂直判定、三垂線定理、二面角等基礎知識,考查空間想象能力、邏輯思維能力、運算能力以及空間向量的應用。

    ∵AC⊥BD,∴A1C⊥BD,

若A1C⊥平面BED,則A1C⊥BE,

由三垂線定理可得B1C⊥BE,

∴△BCE∽△B1BC,

   (2)連A1G,連EG交A1C于H,則EG⊥BD,

∵A1C⊥平面BED,

∴∠A1GE是二面角A1―BD―E的平面角。

(12分)

   (1)以D為坐標原點,射線DA為x軸的正半軸,

射線DC為y軸的正半軸,建立如圖所示直角坐

標系D―xyz。

      (6分)

   (2)設向量的一個法向量,

                         (12分)

20.本小題主要考查等差數(shù)列、等比數(shù)列定義,求通項、數(shù)列求和等基礎知識,考查綜合分析問題的能力和推理論證能力。

    解:(1)

   

   (2)

   

21.解:(1)對求導得

   

―3

(-3,0)

0

(0,2)

2

(2,9)

9

 

+

0

0

+

 

 

極大

極小

 

    從而(―3,0)和(2,9)是函數(shù)的單調遞增區(qū)間,(0,2)是的單調遞減區(qū)間,

   

   (2)設曲線,則切線的方程為

   (3)根據(jù)上述研究,對函數(shù)分析如下:

   

    交點的橫坐標,交點的個數(shù)即為方程的實根的個數(shù)。

   

   

22.解:(1)

     

        把②兩邊平方得

        又代入上式得

        把③代入①得

       

                                             (6分)

       (2)設直線AB的傾斜角為,根據(jù)對稱性只需研究是銳角情形,不妨設是銳角,

        則

       

        從而    (9分)

        根據(jù)(1)知

       

       

        因此          (12分)

     


    同步練習冊答案