題目列表(包括答案和解析)
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當0<a<2時,求函數(shù)在區(qū)間上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到..
令,則,所以或,得到結(jié)論。
第二問中, ().
.
因為0<a<2,所以,.令 可得.
對參數(shù)討論的得到最值。
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則,所以或. ……………………3分
因為定義域為,所以.
令,則,所以.
因為定義域為,所以. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為. ………………………7分
(II) ().
.
因為0<a<2,所以,.令 可得.…………9分
所以函數(shù)在上為減函數(shù),在上為增函數(shù).
①當,即時,
在區(qū)間上,在上為減函數(shù),在上為增函數(shù).
所以. ………………………10分
②當,即時,在區(qū)間上為減函數(shù).
所以.
綜上所述,當時,;
當時,
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項和
【解析】第一問,因為由題設(shè)可知
又 故
或,又由題設(shè) 從而
第二問中,
當時,,時
故時,
時,
分別討論得到結(jié)論。
由題設(shè)可知
又 故
或,又由題設(shè)
從而……………………4分
(2)
當時,,時……………………6分
故時,……8分
時,
……………………10分
綜上可得
已知,函數(shù)
(1)當時,求函數(shù)在點(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當時, 又 所以函數(shù)在點(1,)的切線方程為;(2)中令 有
對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當時, 又
∴ 函數(shù)在點(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當即時
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當即時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。
綜上所述 時,極大值為,無極小值
時 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實數(shù)的取值范圍是(,)
函數(shù)是定義在上的奇函數(shù),且。
(1)求實數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當,x=-1時,,當x=1時,
解:(1)是奇函數(shù),。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函數(shù)!8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當,x=-1時,,當x=1時,。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com