題目列表(包括答案和解析)
函數(shù)y=和y=bx+(a-5)的圖像的一個(gè)交點(diǎn)的坐標(biāo)是(-1,-3).
(1)求這兩個(gè)函數(shù)的解析式;
(2)在同一直角坐標(biāo)系里,畫出它們的圖像.
分析:先由兩函數(shù)圖像的一個(gè)交點(diǎn)是(-1,-3),把(-1,-3)代入兩函數(shù)解析式,得a、b的方程組,再求解這個(gè)方程組,從而確定函數(shù)解析式,并畫出圖像.
|
|
九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐一應(yīng)用——探究的過程:
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進(jìn)行測(cè)量,測(cè)得一隧道的路面寬為10 m.隧道頂部最高處距地面6.25 m,并畫出了隧道截面圖.建立了如圖②所示的直角坐標(biāo)系.請(qǐng)你求出拋物線的解析式.
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎直方向上的高度差至少為0.5 m.為了確保安全.問該隧道能否讓最寬3 m.最高3.5 m的兩輛廂式貨車居中并列行駛(兩車并列行駛時(shí)不考慮兩車間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探索拋物線的有關(guān)知識(shí),他們借助上述拋物線模型塑.提出了以下兩個(gè)問題,請(qǐng)予解答:
Ⅰ.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上.頂點(diǎn)A、B落在x軸上.設(shè)矩形ABCD的周長(zhǎng)為l,求l的最大值.
Ⅱ.如圖④,過原點(diǎn)作一條y=x的直線OM,交拋物線于點(diǎn)M.交拋物線對(duì)稱軸于點(diǎn)N,P為直線OM上一動(dòng)點(diǎn),過P點(diǎn)作x軸的垂線交拋物線于點(diǎn)Q.問在直線OM上是否存在點(diǎn)P,使以P、N、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
九(1)班數(shù)學(xué)課題學(xué)習(xí)小組,為了研究學(xué)習(xí)二次函數(shù)問題,他們經(jīng)歷了實(shí)踐——應(yīng)用——探究的過程
(1)實(shí)踐:他們對(duì)一條公路上橫截面為拋物線的單向雙車道的隧道進(jìn)行測(cè)量,測(cè)得隧道的路面寬為10米,隧道頂部最高處距地面6.25米,并畫出了隧道截面圖,建立了如圖所示的直角坐標(biāo)系,請(qǐng)你求出拋物線的解析式
(2)應(yīng)用:按規(guī)定機(jī)動(dòng)車輛通過隧道時(shí),車頂部與隧道頂部在豎起方向上的高度差至少為0.5米,為了確保安全,問該隧道能否讓最寬3米,最高3.5米的兩輛車居中并列行駛(不考慮兩車之間的空隙)?
(3)探究:該課題學(xué)習(xí)小組為進(jìn)一步探究拋物線的有關(guān)知識(shí),他們借助上述拋物線模型,提出了以下兩個(gè)問題,請(qǐng)予解答:
①如圖,在拋物線內(nèi)作矩形ABCD,使頂點(diǎn)C、D落在拋物線上,頂點(diǎn)A、B落在x軸上,設(shè)矩形ABCD的周長(zhǎng)為為l,求l的最大值
②如圖,過原點(diǎn)作一條直線y=x,交拋物線于M,交拋物線的對(duì)稱軸于N,P為直線OM上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q,問在直線OM上是否存在點(diǎn)P,使以點(diǎn)P、N、Q為頂點(diǎn)的三角形為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com