(Ⅰ)求證:面, 查看更多

 

題目列表(包括答案和解析)














(Ⅰ)求證:平面
(Ⅱ)設(shè)的中點(diǎn)為,求證:平面
(Ⅲ)求四棱錐的體積.

查看答案和解析>>

(1)求證:a2+b2+3≥ab+
3
(a+b)
;
(2)a,b分別取何值時(shí),上面不等式取等號.

查看答案和解析>>

(Ⅰ)如圖1,A,B,C是平面內(nèi)的三個(gè)點(diǎn),且A與B不重合,P是平面內(nèi)任意一點(diǎn),若點(diǎn)C在直線AB上,試證明:存在實(shí)數(shù)λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設(shè)G為△ABC的重心,PQ過G點(diǎn)且與AB、AC(或其延長線)分別交于P,Q點(diǎn),若
AP
=m
AB
,
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個(gè)定值;若不是定值,請說明理由.

查看答案和解析>>

(1)求證:對任何實(shí)數(shù)k,x2+y2-2kx-(2k+6)y-2k-31=0恒過兩定點(diǎn),并求經(jīng)過該兩定點(diǎn)且面積最小的圓E的方程;
(2)若PA,PB為(1)中所求圓E的兩條切線,A、B為切點(diǎn),求
PA
PB
的最小值.

查看答案和解析>>

(1)求證:a2+b2+3≥ab+
3
(a+b)

(2)a,b分別取何值時(shí),上面不等式取等號.

查看答案和解析>>

一、     選擇題: DCCBC  ABAAD  BB

二、     填空題:13. ;14. ;15. ;16.

三、 解答題:

17.(10分)解:(Ⅰ)由已知得

由余弦定理得,即…………………………3分

因?yàn)殇J角△ABC中,A+B+C=p,,所以,則

………………………6分

(Ⅱ),則.將代入余弦定理:解得.…10分

18. (12分)解:(Ⅰ)依題意,當(dāng)甲連勝局或乙連勝局時(shí),第二局打完時(shí)比賽結(jié)束.

.   解得.  , .…6分                          

(Ⅱ)根據(jù)比賽規(guī)則可知,若恰好打滿4局后比賽結(jié)束,必須是前兩局打成平局,第三、第四局只能甲全勝或乙全勝.所求概率P=…………………12分

19.(12分)解:(Ⅰ),,

,又,

.    …………………………………………………………6分

(Ⅱ)過垂足為,則

,垂足為,連結(jié)EF由三垂線定理得;

是所求二面角的平面角.……………………9分
設(shè),,

中,由,

,所以

中,,,

故所求二面角的為.…………………………………………12分

 

20(12分)解: (Ⅰ) …………2分

 ∵在區(qū)間上是增函數(shù) 

…………4分

(Ⅱ)∵ ∴對稱軸為 …………6分

∴當(dāng)時(shí)取到最大值  ∴  ∴…………8分

的增區(qū)間為   減區(qū)間為…………12分

21.(12分) 解:(Ⅰ)由題意知,

易得    ………………………………4分

(Ⅱ)

∴當(dāng)時(shí),,

當(dāng)    ………………8分

∴當(dāng)時(shí),取最大值是,又

,即………………12分

22. (12分) 解:(Ⅰ)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|    ∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓…………………………2分

設(shè)方程為

(Ⅱ)假設(shè)存在滿足題意的直線l,若l斜率不存在,易知

不符合題意,故其斜率存在,設(shè)為k,設(shè)

 

   ………6分

 

 

………8分

………10分

解得   代入驗(yàn)證成立

………12分

 

 

 

 


同步練習(xí)冊答案