(Ⅱ)若函數(shù)的導(dǎo)函數(shù)在上的最大值為4.試確定函數(shù)的單調(diào)區(qū)間. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)上的導(dǎo)函數(shù)為,上的導(dǎo)函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知當(dāng)時(shí),上是“凸函數(shù)”,則上(     )

A.既沒有最大值,也沒有最小值   B.既有最大值,也有最小值

C.有最大值,沒有最小值         D.沒有最大值,有最小值

 

查看答案和解析>>

設(shè)函數(shù)上的導(dǎo)函數(shù)為上的導(dǎo)函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知當(dāng)時(shí),上是“凸函數(shù)”,則上(    )

A.既沒有最大值,也沒有最小值 B.既有最大值,也有最小值 
C.有最大值,沒有最小值 D.沒有最大值,有最小值 

查看答案和解析>>

設(shè)函數(shù)上的導(dǎo)函數(shù)為,上的導(dǎo)函數(shù)為,若在上,恒成立,則稱函數(shù)上為“凸函數(shù)”.已知當(dāng)時(shí),上是“凸函數(shù)”,則上(    )
A.既沒有最大值,也沒有最小值B.既有最大值,也有最小值
C.有最大值,沒有最小值D.沒有最大值,有最小值

查看答案和解析>>

函數(shù)f(x)的導(dǎo)函數(shù)f'(x)=2x+b,且f(0)=c,g(x)=
x
f(x)

(1)若c>0,g(x)為奇函數(shù),且g(x)的最大值為
1
2
求b,c的值;
(2)若函數(shù)F(x)=f(x)+2-c定義域?yàn)閇-1,1],且F(x)的最小值為2,當(dāng)函數(shù)f(x)在區(qū)間[-1,1]上有零點(diǎn),求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

設(shè)函數(shù)在區(qū)間()的導(dǎo)函數(shù),在區(qū)間()的導(dǎo)函數(shù),若在區(qū)間()上恒成立,則稱函數(shù)在區(qū)間()為凸函數(shù),已知若當(dāng)實(shí)數(shù)滿足時(shí),函數(shù)上為凸函數(shù),則最大值是_________.

查看答案和解析>>

一、     選擇題: DCCBC  ABAAD  BB

二、     填空題:13. ;14. ;15. ;16.

三、 解答題:

17.(10分)解:(Ⅰ)由已知得

由余弦定理得,即…………………………3分

因?yàn)殇J角△ABC中,A+B+C=p,,所以,則

………………………6分

(Ⅱ),則.將,代入余弦定理:解得.…10分

18. (12分)解:(Ⅰ)依題意,當(dāng)甲連勝局或乙連勝局時(shí),第二局打完時(shí)比賽結(jié)束.

.   解得.  , .…6分                          

(Ⅱ)根據(jù)比賽規(guī)則可知,若恰好打滿4局后比賽結(jié)束,必須是前兩局打成平局,第三、第四局只能甲全勝或乙全勝.所求概率P=…………………12分

19.(12分)解:(Ⅰ),,

,又,

.    …………………………………………………………6分

(Ⅱ)過垂足為,則

,垂足為,連結(jié)EF由三垂線定理得;

是所求二面角的平面角.……………………9分
設(shè),,

中,由

,所以

中,,,

故所求二面角的為.…………………………………………12分

 

20(12分)解: (Ⅰ) …………2分

 ∵在區(qū)間上是增函數(shù) 

…………4分

(Ⅱ)∵ ∴對(duì)稱軸為 …………6分

∴當(dāng)時(shí)取到最大值  ∴  ∴…………8分

的增區(qū)間為   減區(qū)間為…………12分

21.(12分) 解:(Ⅰ)由題意知,

易得    ………………………………4分

(Ⅱ)

∴當(dāng)時(shí),,

當(dāng)    ………………8分

∴當(dāng)時(shí),取最大值是,又

,即………………12分

22. (12分) 解:(Ⅰ)由題意:∵|PA|=|PB|且|PB|+|PF|=r=8

∴|PA|+|PF|=8>|AF|    ∴P點(diǎn)軌跡為以A、F為焦點(diǎn)的橢圓…………………………2分

設(shè)方程為

(Ⅱ)假設(shè)存在滿足題意的直線l,若l斜率不存在,易知

不符合題意,故其斜率存在,設(shè)為k,設(shè)

 

   ………6分

 

 

………8分

………10分

解得   代入驗(yàn)證成立

………12分

 

 

 

 


同步練習(xí)冊(cè)答案