20.在平面直角坐標系中,已知.滿足向量與向量共線.且點都在斜率為6的同一條直線上.若.求 (1)數(shù)列的通項 (2)數(shù)列{}的前n項和 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量
AnAn+1
與向量
BnCn
共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上,若a1=6,b1=12.求:
(1)數(shù)列{an}的通項an;
(2)數(shù)列{
1
an
}的前n項和Tn

查看答案和解析>>

在平面直角坐標系中,已知向量
a
=(mx,2(y-2))
b
=(x,y+2)
(m∈R),且滿足
a
b
,動點M(x,y)的軌跡為C.
(Ⅰ)求軌跡C的方程,并說明該方程所表示的軌跡的形狀;
(Ⅱ)若已知圓O:x2+y2=1,當m=1時,過點M作圓O的切線,切點為A、B,求向量
OA
OB
的最大值和最小值.

查看答案和解析>>

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設(shè)函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

在平面直角坐標系中,已知點A(1,0),向量
e
=(0,1),點B為直線x=-1上的動點,點C滿足2
OC
=
OA
+
OB
,點M滿足
BM
•e=0
,
CM
AB
=0

(1)試求動點M的軌跡E的方程;
(2)試證直線CM為軌跡E的切線.

查看答案和解析>>

在平面直角坐標系中,已知A1(-3,0),A2(3,0),P(x,y),M(
x2-9
,0)
,O為坐標原點,若實數(shù)λ使向量
A1P
,λ
OM
A2P
滿足:λ2(
OM
)2=
A1P
A2P
,設(shè)點P的軌跡為W.
(Ⅰ)求W的方程,并判斷W是怎樣的曲線;
(Ⅱ)當λ=
3
3
時,過點A1且斜率為1的直線與W相交的另一個交點為B,能否在直線x=-9上找到一點C,恰使△A1BC為正三角形?請說明理由.

查看答案和解析>>


同步練習冊答案