題目列表(包括答案和解析)
如圖,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M為AA1的中點,P是BC上一點,且由P沿棱柱側(cè)面經(jīng)過棱CC1到M點的最短路線長為,設這條最短路線與C1C的交點為N。求
1) 該三棱柱的側(cè)面展開圖的對角線長;
2) PC和NC的長;
3) 平面NMP和平面ABC所成二面角(銳角)的大。ㄓ梅慈呛瘮(shù)表示)
(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點,E是A1B1的中點。
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點,E是A1B1的中點。
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
必修
一、填空題
1、8 2、 3、2|P| 4、 5、向左移,在把各點的橫坐標伸長到原來的3倍
6、18 7、120度 8、 9、 10、②④ 11、 12、 13、 14、
二、解答題
15.解:(Ⅰ)=.………… 4分
由,得.
∴函數(shù)的單調(diào)增區(qū)間為 .………… 7分
(Ⅱ)由,得.
∴. ………………………………………… 10分
∴,或,
即或.
∵,∴. …………………………………………… 14分
16.解:(Ⅰ)n≥2時,. ………………… 4分
n=1時,,適合上式,
∴. ………………… 5分
(Ⅱ),. ………………… 8分
即.
∴數(shù)列是首項為4、公比為2的等比數(shù)列. ………………… 10分
,∴.……………… 12分
Tn==. ………………… 14分
17、⑴ ⑵ ⑶不能
18、⑴
⑵=1時,的最大值為20200,=10時,的最小值為12100。
19、⑴易知AB恒過橢圓的右焦點F(,0) ⑵ S= ⑶存在。
20、⑴
⑵或
⑶(,)
附加題選修參考答案
1、⑴BB= , ⑵
2、⑴ ⑵ ,, ,EX=1
3、
4、⑴ ⑵ MN=2
5、⑴特征值為2和3 ,對應的特征向量分別為及,
⑵ ,橢圓在矩陣的作用下對應得新方程為
6、提示:,然后用基本不等式或柯西不等式即可。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com