題目列表(包括答案和解析)
已知拋物線y=x2和三個點
M(x0,y0)、P(0,y0)、N(-x0,y0)(y0≠,y0>0),過點M的一條直線交拋物線于A、B兩點,AP、BP的延長線分別交曲線C于E、F.
(1)證明E、F、N三點共線;
(2)如果A、B、M、N四點共線,問:是否存在y0,使以線段AB為直徑的圓與拋物線有異于A、B的交點?如果存在,求出y0的取值范圍,并求出該交點到直線AB的距離;若不存在,請說明理由.
曲線S1:y=x2和S2:y=-(x-2)2的公切線方程是________.
與直線x+y-2=0和曲線x2+y2-12x-12y+54=0都相切的半徑最小的圓的標準方程是
A.(x+2)2+(y-2)2=2
B.(x+2)2+(y+2)2=2
C.(x-2)2+(y-2)2=2
D.(x-2)2+(y+2)2=2
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
如圖,已知曲線C:y=x2(0≤x≤1),O(0,0),Q(1,0),R(1,1).取線段OQ的中點A1,過A1作x軸的垂線交曲線C于P1,過P1作y軸的垂線交RQ于B1,記a1為矩形A1P1B1Q的面積.分別取線段OA1,P1B1的中點A2,A3,過A2,A3分別作x軸的垂線交曲線C于P2,P3,過P2,P3分別作y軸的垂線交A1P1,RB1于B2,B3,記a2為兩個矩形A2P2B2 A1與矩形A3P3B3B1的面積之和.以此類推,記an為2n-1個矩形面積之和,從而得數(shù)列{an},設這個數(shù)列的前n項和為Sn.
(I)求a2與an;
(Ⅱ)求Sn,并證明Sn<.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com