題目列表(包括答案和解析)
(log23+log49+log827+…+log2n3n)×log9.
[分析] 此題是不同底數(shù)的對數(shù)運算,也需用換底公式進行化簡求值.
已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.
【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。
先反設(shè),然后推理論證,最后退出矛盾。證明:假設(shè)三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。
證明:假設(shè)三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由題意a、b、c互不相等,∴①式不能成立.
∴假設(shè)不成立,即三個方程中至少有一個方程有兩個相異實根.
將函數(shù)的圖象向左平移個單位,得到函數(shù)即的圖象,再向上平移1個單位,所得圖象的函數(shù)解析式為,故選B.
答案:B
【命題立意】:本題考查三角函數(shù)的圖象的平移和利用誘導(dǎo)公式及二倍角公式進行化簡解析式的基本知識和基本技能,學(xué)會公式的變形. w.w.w.k.s.5.u.c.o.m
某產(chǎn)品的廣告費支出 (單位:百萬元)與銷售額 (單位:百萬元)之間有如下數(shù)據(jù):
2 |
4 |
5 |
6 |
8 |
|
30 |
40 |
60 |
50 |
70 |
(1)畫出散點圖.
(2)求關(guān)于的回歸直線方程.
(3)預(yù)測廣告費為9百萬元時的銷售額是多少?
【解析】本試題考查了線性回歸方程的求解,通過作出散點圖,觀察點是不是滿足線性相關(guān),如果滿足,就利用公式進行求解運算,并能回歸實際中解釋實際的含義。
已知=2,點()在函數(shù)的圖像上,其中=.
(1)設(shè),求及數(shù)列{}的通項公式;
(2)記,求數(shù)列{}的前n項和,并求.
【解析】本試題主要考查了數(shù)列的通項公式和數(shù)列求和的運用。注意構(gòu)造等比數(shù)列的思想的運用。并能運用裂項求和。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com