題目列表(包括答案和解析)
材料:為了美化環(huán)境,某房地產(chǎn)公司打算在所管轄的一個居民小區(qū)內(nèi)的一塊半圓形空地上,劃出一個內(nèi)接矩形辟為綠地,且使矩形的一邊落在半圓的直徑上,而另外兩個頂點在半圓的圓周上,已知半圓的半徑為30米.為了使綠地的面積最大,該公司請了本公司的一位設(shè)計師,設(shè)計出了這個半圓內(nèi)接矩形的長與寬的關(guān)系.該設(shè)計師的計算過程如下:
如下圖,設(shè)CD=x,則OD=,矩形的面積設(shè)為S,則
S=2x·=.
所以當(dāng)x2=450,即x=時,S有最大值,即此時矩形的面積最大.
問題:現(xiàn)在我們已經(jīng)學(xué)習(xí)了三角函數(shù)的有關(guān)知識,利用三角函數(shù)的知識該如何解決這一問題?
我們已經(jīng)學(xué)習(xí)了兩種計算事件發(fā)生概率的方法:
(1)通過試驗方法得到事件發(fā)生的頻率,來估計概率;
(2)用古典概型的公式來計算概率.可以求解很多的隨機事件概率,為什么還要學(xué)習(xí)幾何概型?
就三角形的面積計算問題作一探索,你現(xiàn)在已經(jīng)學(xué)習(xí)了哪些計算公式,還可發(fā)現(xiàn)和證明一些新的計算公式嗎?
由舊知引新知,溫故而知新,推陳出新,這便是數(shù)學(xué)中的類比.平面幾何中的許多內(nèi)容可以通過類比推廣到空間,這里首先就要將平面直角坐標(biāo)系推廣到空間直角坐標(biāo)系.你已經(jīng)學(xué)習(xí)了立體幾何初步的一些知識,你能舉出一些由平面幾何探究空間問題的例子、思想或方法嗎?
在圓錐曲線的學(xué)習(xí)中,我們已經(jīng)學(xué)習(xí)了它的標(biāo)準(zhǔn)方程,以橢圓=1(a>b>0)為例說明此方程就是以F1(-c,0),F(xiàn)2(c,0)為焦點,長軸長為2a的橢圓的方程.怎樣利用曲線與方程的定義說明上述問題?
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com