已知函數(shù)在區(qū)間上是增函數(shù).試求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減。

(1)求的值;

(2)若斜率為24的直線是曲線的切線,求此直線方程;

(3)是否存在實數(shù)b,使得函數(shù)的圖象與函數(shù)的圖象恰有2個不同交點?若存在,求出實數(shù)b的值;若不存在,試說明理由.

 

查看答案和解析>>

已知函數(shù)f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)已知當(dāng)x>0時,函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫出函數(shù)F(x)=
3
f(x)
的解析式;
(Ⅲ)記(Ⅱ)中的函數(shù)F(x)=
3
f(x)
的圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出l的方程;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax3+
1
2
sinθx2-2x+c的圖象經(jīng)過點(1,
37
6
)
,且在區(qū)間(-2,1)上單調(diào)遞減,在[1,+∞)上單調(diào)遞增.
(1)證明sinθ=1;
(2)求f(x)的解析式;
(3)若對于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤
45
2
恒成立,試問:這樣的m是否存在,若存在,請求出m的范圍;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x2-tlnx的圖象在點(1,f(1))處的切線方程是y=kx+7.
(1)試確定函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=-x2+14x,且f(x)與g(x)在區(qū)間(a,a+2)上均為單調(diào)增函數(shù),求a的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=
2x+1x+2
,試證明f(x)在區(qū)間(-2,+∞)上是增函數(shù),并求出該函數(shù)在區(qū)間[1,4]上的最大值和最小值.

查看答案和解析>>


同步練習(xí)冊答案