題目列表(包括答案和解析)
(1)證明a>0,c>0;
(2)設(shè)函數(shù)g(x)=f(x)-mx(x∈R),求m的取值范圍,使函數(shù)g(x)在區(qū)間[-1,1]上是單調(diào)函數(shù).
(1)求證:|g(1)|≤2;
(2)求證:|x|≤1時,|g(x)|≤4.
已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤(x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設(shè)g(x)=f(x)-x,x∈[0,+∞],若g(x)圖像上的點都位于直線y=的上方,求實數(shù)m的取值范圍.
已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有f(x)≤(x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設(shè)g(x)=f(x)-x,x∈[0,+∞),若g(x)圖像上的點都位于直線的上方,求實數(shù)m的取值范圍.
已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時,有成立.
(1)證明:f(2)=2.
(2)若f(-2)=0,f(x)的表達式.
(3)設(shè)g(x)=f(x)-x x∈[0,+∞],若g(x)圖上的點都位于直線的上方,求實數(shù)m的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com