有人玩擲硬幣走跳棋的游戲.已知硬幣出現(xiàn)正反面為等可能性事件.棋盤(pán)上標(biāo)有第0站.第1站.第2站.-.第100站.一枚棋子開(kāi)始在第0站.棋手每擲一次硬幣.棋子向前跳動(dòng)一次.若擲出正面.棋向前跳一站(從k到k+1).若擲出反面.棋向前跳兩站(從k到k+2).直到棋子跳到第99站或跳到第100站時(shí).該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn. (1)求P0.P1.P2的值, (2)求證:Pn-Pn-1=-(Pn-1-Pn-2).其中n∈N.2≤n≤99, (3)求P99及P100的值. 查看更多

 

題目列表(包括答案和解析)

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P0,P1,P2的值;
(2)求證:Pn-Pn-1=-
12
(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面的概率都是
12
,棋盤(pán)上標(biāo)有第0站,第1站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣棋子向前跳動(dòng)一次,若擲出正面,棋子向前跳一站(從n到n+1),若擲出反面,棋子向前跳兩站(從n到n+2),直到棋子跳到第99站(勝利大本營(yíng)),或跳到第100站(失敗集中營(yíng))時(shí)該游戲結(jié)束,設(shè)棋子跳到第n站的概率為P(n);
(1)求P(1),P(2);
(2)求證:數(shù)列{P(n)-P(n-1)}是等比數(shù)列(n∈N,n≤99);
(3)求P(99)及P(100)的值.

查看答案和解析>>

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P0,P1,P2的值;
(2)求證:Pn-Pn-1=-數(shù)學(xué)公式(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面的概率都是數(shù)學(xué)公式,棋盤(pán)上標(biāo)有第0站,第1站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣棋子向前跳動(dòng)一次,若擲出正面,棋子向前跳一站(從n到n+1),若擲出反面,棋子向前跳兩站(從n到n+2),直到棋子跳到第99站(勝利大本營(yíng)),或跳到第100站(失敗集中營(yíng))時(shí)該游戲結(jié)束,設(shè)棋子跳到第n站的概率為P(n);
(1)求P(1),P(2);
(2)求證:數(shù)列{P(n)-P(n-1)}是等比數(shù)列(n∈N,n≤99);
(3)求P(99)及P(100)的值.

查看答案和解析>>

有人玩擲硬幣走跳棋的游戲,已知硬幣出現(xiàn)正反面為等可能性事件,棋盤(pán)上標(biāo)有第0站,第1站,第2站,…,第100站,一枚棋子開(kāi)始在第0站,棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若擲出正面,棋向前跳一站(從k到k+1),若擲出反面,棋向前跳兩站(從k到k+2),直到棋子跳到第99站(勝利大本營(yíng))或跳到第100站(失敗集中營(yíng))時(shí),該游戲結(jié)束.設(shè)棋子跳到第n站概率為Pn
(1)求P0,P1,P2的值;
(2)求證:Pn-Pn-1=-
1
2
(Pn-1-Pn-2),其中n∈N,2≤n≤99;
(3)求P99及P100的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案