過(guò)原點(diǎn)作曲線y=ex的切線.則切點(diǎn)的坐標(biāo)為 ,切線的斜率為 . 查看更多

 

題目列表(包括答案和解析)

(05北京卷)已知函數(shù)f(x)=-x3+3x2+9x+a,

(I)求f(x)的單調(diào)遞減區(qū)間;

(II)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

 

查看答案和解析>>

(05年北京卷理)過(guò)原點(diǎn)作曲線y=的切線,則切點(diǎn)的坐標(biāo)為         ,切線的斜率為       

查看答案和解析>>

(05年北京卷理)(13分)

甲、乙倆人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為

(Ⅰ)記甲擊中目標(biāo)的次數(shù)為,求的概率分布及數(shù)學(xué)期望;

(Ⅱ)求乙至多擊中目標(biāo)2次的概率;

(Ⅲ)求甲恰好比乙多擊中目標(biāo)2次的概率

 

查看答案和解析>>

(05年北京卷理)(14分)

如圖,在直四棱柱中,,

垂足為

(Ⅰ)求證;

(Ⅱ)求二面角的大小;

(Ⅲ)求異面直線所成角的大小

查看答案和解析>>

(05年北京卷理)(14分)

設(shè)是定義在[0,1]上的函數(shù),若存在,使得在[0,]上單調(diào)遞增,在[,1]單調(diào)遞減,則稱(chēng)為[0,1]上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間對(duì)任意的[0,1]上的單峰函數(shù),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法

(Ⅰ)證明:對(duì)任意的 , ,若,則(0,)為含峰區(qū)間;若,則(,1)為含峰區(qū)間;

(Ⅱ)對(duì)給定的(0<<0.5),證明:存在,滿足,使得由(Ⅰ)確定的含峰區(qū)間的長(zhǎng)度不大于0.5+;

(Ⅲ)選取, 由(Ⅰ)可確定含峰區(qū)間為(0,)或(,1),在所得的含峰區(qū)間內(nèi)選取,由類(lèi)似地可確定是一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對(duì)值不小于0.02且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34

(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)

查看答案和解析>>


同步練習(xí)冊(cè)答案