21. 已知 (1)判斷在上的單調(diào)性, (2)解關(guān)于的不等式 (3)解關(guān)于的不等式, 求證:對一切.有. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
x 2+ax+a
x
,且a<1.
(1)當x∈[1,+∞)時,判斷f(x)的單調(diào)性并證明;
(2)在(1)的條件下,若m滿足f(3m)>f(5-2m),試確定m的取值范圍.
(3)設(shè)函數(shù)g(x)=x•f(x)+|x2-1|+(k-a)x-a,k為常數(shù).若關(guān)于x的方程g(x)=0在(0,2)上有兩個解x1,x2,求k的取值范圍,并比較
1
x1
+
1
x2
與4的大。

查看答案和解析>>

已知函數(shù)f(x)=
|x|x+2

(1)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性,并加以證明;
(2)如果關(guān)于x的方程f(x)=kx2有四個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

已知f(x)是R上的單調(diào)函數(shù),且對任意的實數(shù)a∈R,有f(-a)+f(a)=0恒成立,若f(-3)=2
(Ⅰ)試判斷f(x)在R上的單調(diào)性,并說明理由;
(Ⅱ)解關(guān)于x的不等式:f(
m-xx
)+f(m)<0
,其中m∈R且m>0.

查看答案和解析>>

已知函數(shù)f(x)=x2+
2x
-4,(x>0)
,g(x)和f(x)的圖象關(guān)于原點對稱.
(I)求函數(shù)g(x)的解析式;
(II)試判斷g(x)在(-1,0)上的單調(diào)性,并給予證明;
(III)將函數(shù)g(x)的圖象向右平移a(a>0)個單位,再向下平移b(b>0)個單位,若對于任意的a,平移后gf(x)和f(x)的圖象最多只有一個交點,求b的最小值.

查看答案和解析>>

已知函數(shù)f(x)=
|x|x+2

(1)判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性并加以證明;
(2)求函數(shù)f(x)的值域;
(3)如果關(guān)于x的方程f(x)=kx3有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>


同步練習冊答案