題目列表(包括答案和解析)
當0≤x≤1時,函數(shù)y=ax+a-1的值有正值也有負值,則實數(shù)a的取值范圍是
A.
B.a>1
C.或a>1
D.
函數(shù)f(x)對一切實數(shù)x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)當0<x<2時,不等式f(x)>ax-5恒成立,求a的取值范圍.
函數(shù)f(x)的定義域為R,對任意x、yR,都有f(x+y)=f(x)f(y),且x>0時,0<f(x)<1.
(1)當x<0時,試比較f(x)與1的大。
(2)f(x)是否具有單調性,并證明你的結論;
(3)若集合M={(x,y)|f(x2)f(y2)>f(1)},N={(x,y)|f(ax-y+2)=1},MN=,求實數(shù)a的取值范圍.
(1)當x<0時,試比較f(x)與1的大。
(2)f(x)是否具有單調性,并證明你的結論;
(3)若集合M={(x,y)|f(x2)f(y2)>f(1)},N={(x,y)|f(ax-y+2)=1},MN=,求實數(shù)a的取值范圍.
若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關于點(a,b)對稱.
(1)已知函數(shù)f(x)=的圖象關于點(0,1)對稱,求實數(shù)m的值;
(2)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的條件下,當t>0時,若對任意實數(shù)x∈(-∞,0),恒有g(x)<f(t)成立,求實數(shù)a的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com