題目列表(包括答案和解析)
繼薩凱里之后,大概又過了半個世紀.歐洲“數(shù)學(xué)之王”高斯的至友匈牙利數(shù)學(xué)家伏爾夫剛·鮑里埃,終身從事證明“第五公設(shè)”的研究,由于心血耗盡,毫無成效,便懷著沉重的心情,給那酷愛數(shù)學(xué)的兒子亞諾什·鮑耶(1802~1860)寫信,希望小鮑耶“不要再做克服平行公理的嘗試”.他忠告兒子說:“投身于這一貪得無度地吞人們的智慧、精力和心血的無底洞,白花時間在上面,一輩子也證不出這個命題來.”他滿腹心酸地寫到:“我經(jīng)過了這個毫無希望的夜的黑暗,我在這里面埋沒了人生的一切亮光、一切歡樂和一切希望.”最后告誡自己心愛的兒子說:“若再癡戀這一無止無休的勞作,必然會剝奪你生活的一切時間、健康、休息和幸福!”但是,年僅21歲的小鮑耶卻是敢向“無底洞”覓求真知的探索者.他認真吸取前人失敗的教訓(xùn),初出茅廬就大顯身手.小鮑耶匠心獨運,大膽創(chuàng)新,決然將“第五公設(shè)”換成他自身的否定.從“三角形三個內(nèi)角和小于180°”這一令人瞠目結(jié)舌的假設(shè)出發(fā),建立起一套完整協(xié)調(diào)、天衣無縫的新幾何體系.小鮑耶滿懷激情地將自己的科學(xué)創(chuàng)見向父親報捷.老伏爾夫剛以之見教于至友高斯,不久,高斯復(fù)信鮑里埃,信中寫到:“如果我一開始便說我不能稱贊這樣的成果,你一定會感到驚訝.但是,我不能不這樣說,因為稱贊這些成果就等于稱贊我自己.令郎的這些工作,他走過的路,以及所獲得的成果,跟我過去30年至35年前的所思所得幾乎一模一樣.”高斯在回信結(jié)尾還開誠布公地提到:“我自己的著作,盡管寫好的只是一部分,我本來也想發(fā)表,因為我怕引某些人的喊聲,現(xiàn)在,有了朋友的兒子能夠這樣寫下來,免得他與我一樣湮沒,那是使我非常高興的.”這位當代數(shù)學(xué)大師恐怕做夢也沒想到,他這封推心置腹的信,竟會一舉撞毀初露鋒芒的數(shù)壇新星!
高斯的復(fù)信給小鮑耶帶來意想不到的毀滅性打擊.躊躇滿志的鮑耶誤認為高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán).為此,他痛心疾首,認為自己心血澆灌出來的成果和嘔心瀝血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究.
1.對于“數(shù)學(xué)之王”高斯給鮑耶的回信,你有什么看法呢?如果你是高斯,你該怎樣回信?
2.躊躇滿志的鮑耶誤認為“高斯動用自己擁有的崇高權(quán)威來壟斷和奪取這一新體系的發(fā)明優(yōu)先權(quán)”,進而“郁郁寡歡,大失所望,發(fā)誓拋棄了一切數(shù)學(xué)研究”.你又有何看法呢?假如你是鮑耶,你又該怎么做呢?
已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在,有?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.
【解析】第一問中,由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)中當時,則
即,其中是大于等于的整數(shù)
反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)中設(shè)當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
結(jié)合二項式定理得到結(jié)論。
解(1)由得,整理后,可得、,為整數(shù)不存在、,使等式成立。
(2)當時,則即,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則,
顯然,其中
、滿足的充要條件是,其中是大于等于的整數(shù)
(3)設(shè)當為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),
當為偶數(shù)時,式不成立。由式得,整理
當時,符合題意。當,為奇數(shù)時,
由,得
當為奇數(shù)時,此時,一定有和使上式一定成立。當為奇數(shù)時,命題都成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com