等差等比數(shù)列的基本問題 查看更多

 

題目列表(包括答案和解析)

(2009天津卷理)(本小題滿分14分)

已知等差數(shù)列{}的公差為d(d0),等比數(shù)列{}的公比為q(q>1)。設(shè)=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,證明(1-q)-(1+q)=,n;    

(Ⅲ)   若正數(shù)n滿足2nq,設(shè)的兩個不同的排列, ,   證明。

本小題主要考查等差數(shù)列的通項公式、等比數(shù)列的通項公式與前n項和公式等基礎(chǔ)知識,考查運(yùn)算能力,推理論證能力及綜合分析和解決問題的能力的能力,滿分14分。

查看答案和解析>>

(2009天津卷理)(本小題滿分14分)

已知等差數(shù)列{}的公差為d(d0),等比數(shù)列{}的公比為q(q>1)。設(shè)=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,證明(1-q)-(1+q)=,n;    

(Ⅲ)   若正數(shù)n滿足2nq,設(shè)的兩個不同的排列, ,   證明。

本小題主要考查等差數(shù)列的通項公式、等比數(shù)列的通項公式與前n項和公式等基礎(chǔ)知識,考查運(yùn)算能力,推理論證能力及綜合分析和解決問題的能力的能力,滿分14分。

查看答案和解析>>

(本題16分)

   已知公差不為0的等差數(shù)列{}的前4項的和為20,且成等比數(shù)列;

(1)求數(shù)列{}通項公式;(2)設(shè),求數(shù)列{}的前n項的和;

(3)在第(2)問的基礎(chǔ)上,是否存在使得成立?若存在,求出所有解;若不存在,請說明理由.

 

查看答案和解析>>

(本題16分)
已知公差不為0的等差數(shù)列{}的前4項的和為20,且成等比數(shù)列;
(1)求數(shù)列{}通項公式;(2)設(shè),求數(shù)列{}的前n項的和
(3)在第(2)問的基礎(chǔ)上,是否存在使得成立?若存在,求出所有解;若不存在,請說明理由.

查看答案和解析>>

 

一、選擇題

1. D

解析:∵a3+a7+a11=3a7為常數(shù),

∴S13==13a7,也是常數(shù).

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A ,

4.D  數(shù)列是以2為首項,以為公比的等比數(shù)列,項數(shù)為故選D。

5.B

6. D

解析:當(dāng)q=1時,Sn,Sn+1,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-2時,Sn+1,Sn,Sn+2構(gòu)成等差數(shù)列;

當(dāng)q=-時,Sn,Sn+2,Sn+1構(gòu)成等差數(shù)列.

7.A   僅②不需要分情況討論,即不需要用條件語句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依題意可得.

11.B,指輸入的數(shù)據(jù).

12.D 

(法一)輾轉(zhuǎn)相除法:         

的最大公約數(shù).

(法二)更相減損術(shù):

        

        ∴的最大公約數(shù).

二、填空題

13.

14.

當(dāng)時,是正整數(shù)。

15.

解析:bn===a1,bn+1=a1,=(常數(shù)).

16.-6

三、解答題

17.解(1)

     

      以3為公比的等比數(shù)列.

 (2)由(1)知,..

      不適合上式,

       .

18.解:(1)an=    (2).

19.解:(1),;

(2)由(1)得,假設(shè)數(shù)列{bn}中存在三項bp,bq,br(p,q,r互不相等)成等比數(shù)列,則

,,,得

∴p=r,矛盾.  ∴數(shù)列{bn}中任意三項都不可能成等比數(shù)列.

20.解:設(shè)未贈禮品時的銷售量為a0個,而贈送禮品價值n元時銷售量為an個,

,

又設(shè)銷售利潤為數(shù)列,

當(dāng),

考察的單調(diào)性,

當(dāng)n=9或10時,最大

答:禮品價值為9元或10元時商品獲得最大利潤.

 

21.解析:(1)時,

兩式相減:

故有

。

數(shù)列為首項公比的等比數(shù)列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首項為149,公差為-3的等差數(shù)列.  

當(dāng)n≤50時,

當(dāng)51≤n≤100時,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴綜上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步練習(xí)冊答案