題目列表(包括答案和解析)
設點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得
;
(2)當時,若,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.
由拋物線定義得到
第二問設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當時,該逆命題的一個反例.(反例不唯一)
② 設,分別過作
拋物線的準線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則
,
而,所以.
(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標()滿足 ”,即:
“當時,若,且點的縱坐標()滿足,則”.此命題為真.事實上,設,
分別過作拋物線準線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數,關于軸對稱”,即:
“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)
已知數列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結論。
解:(Ⅰ)當時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設,,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數學歸納法)①當時, ,命題成立;
②假設時,命題成立,即,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數,不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知數列是首項為的等比數列,且滿足.
(1) 求常數的值和數列的通項公式;
(2) 若抽去數列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數列,試寫出數列的通項公式;
(3) 在(2)的條件下,設數列的前項和為.是否存在正整數,使得?若存在,試求所有滿足條件的正整數的值;若不存在,請說明理由.
【解析】第一問中解:由得,,
又因為存在常數p使得數列為等比數列,
則即,所以p=1
故數列為首項是2,公比為2的等比數列,即.
此時也滿足,則所求常數的值為1且
第二問中,解:由等比數列的性質得:
(i)當時,;
(ii) 當時,,
所以
第三問假設存在正整數n滿足條件,則,
則(i)當時,
,
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得.又因為,所以,
于是,,
所以,當,且時,取得最大值1。
(3)對于給定的正整數t,任給數表如下,
… |
|||
… |
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且,因此,不妨設,
且。
由得定義知,,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
… |
||
… |
-1 |
… |
-1 |
則且,
綜上,對于所有的,的最大值為
已知函數的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調遞減 |
極小值 |
單調遞增 |
極大值 |
單調遞減 |
又,,。∴在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調遞增。∴在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上
一、選擇題
1.B 2.A 3.C 4.C 5.A6.D 7.C10.B11.C
w.w.w.k.s.5.u.c.o.m
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com