正解:接上..又因為.所以. 查看更多

 

題目列表(包括答案和解析)

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

(2)當時,若

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由

及拋物線的定義得,即,則

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

已知數列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數,不等式②成立.           ………………10分

②由于

所以,

從而.

也即

 

查看答案和解析>>

已知數列是首項為的等比數列,且滿足.

(1)   求常數的值和數列的通項公式;

(2)   若抽去數列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數列,試寫出數列的通項公式;

(3) 在(2)的條件下,設數列的前項和為.是否存在正整數,使得?若存在,試求所有滿足條件的正整數的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數p使得數列為等比數列,

,所以p=1

故數列為首項是2,公比為2的等比數列,即.

此時也滿足,則所求常數的值為1且

第二問中,解:由等比數列的性質得:

(i)當時,

(ii) 當時,,

所以

第三問假設存在正整數n滿足條件,則,

則(i)當時,

,

 

查看答案和解析>>

設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。

對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):

記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   對如下數表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)設數表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因為

所以

(2)  不妨設.由題意得.又因為,所以

于是,,

    

所以,當,且時,取得最大值1。

(3)對于給定的正整數t,任給數表如下,

任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表

,并且,因此,不妨設,

得定義知,,

又因為

所以

     

     

所以,

對數表

1

1

1

-1

-1

 

綜上,對于所有的,的最大值為

 

查看答案和解析>>

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增。∴最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

一、選擇題

1.B  2.A  3.C  4.C  5.A6.D 7.C10.B11.C

w.w.w.k.s.5.u.c.o.m

 


同步練習冊答案