15.對于任意的正整數k.用g(k)表示k 的最大奇因數.例如:-.記則(i)當時.的關系是 ,(ii)= . 查看更多

 

題目列表(包括答案和解析)

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f′(x)g(x)>f(x)g′(x),f(x)=ax•g(x)(a>0,且a≠1),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數列
f(n)
g(n)
(n=1,2,…10)中,任意取正整數k(1≤k≤10) 且滿足前k項和大于126,則k的最小值為( 。
A、6B、7C、8D、9

查看答案和解析>>

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f(x)g′(x)>f′(x)g(x),f(x)=axg(x),(a>0,且a≠1,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數列{
f(n)
g(n)
}(n=1,2,1,10)
中,任意取正整數k(1≤k≤10),則前k項和大于
15
16
的概率是
3
5
3
5

查看答案和解析>>

已知f(x),g(x)是定義在R上的函數,f(x)=axg(x)(a>0且a≠1),2
f(1)
g(1)
-
f(-1)
g(-1)
=-1
,在有窮數列{
f(n)
g(n)
}
(n=1,2…,10)中,任意取正整數k(1≤k≤10),則前k項和大于
15
16
的概率是( 。
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

已知f(x),g(x)都是定義在R上的函數,g(x)≠0,f′(x)g(x)>f(x)g′(x),f(x)=ax•g(x)(a>0,且a≠1),,在有窮數列(n=1,2,…10)中,任意取正整數k(1≤k≤10) 且滿足前k項和大于126,則k的最小值為( )
A.6
B.7
C.8
D.9

查看答案和解析>>

已知f(x),g(x)是定義在R上的函數,f(x)=axg(x)(a>0且a≠1),,在有窮數列(n=1,2…,10)中,任意取正整數k(1≤k≤10),則前k項和大于的概率是( )
A.
B.
C.
D.

查看答案和解析>>

 

一、選擇題(每小題5 分,共40 分)

DCABD  ABC

二、填空題(每小題5 分,共35分)

9.     10.     11.91    12.②④

13.     14.(i)(2分)    (ii)(3分)

15.(i)(3分);    (ii) (2分)

20090401

,2 分

8,3 分

解得;……………………4分分

(2)

 ………………6分

…………8分

由余弦定理得

 ……………………10分

 …………………………12分

17.解:(1)= 1 表示經過操作以后A 袋中只有一個紅球,有兩種情形出現

①先從A 中取出1 紅和1 白,再從B 中取一白到A 中

②先從A 中取出2 紅球,再從B 中取一紅球到A 中

…………………………(5分)

(2)同(1)中計算方法可知:

于是的概率分別列

0

1

2

3

P

 

E=……………………12分

18.解:(1)AB//平面DEF. 在△ABC 中,

∵E、F分別是AC、BC 上的點,且滿足

∴AB//EF.

    • ∴AB//平面DEF. …………3 分

      (2)過D點作DG⊥AC 于G,連結BG,

      ∵AD⊥CD, BD⊥CD,

      ∴∠ADB 是二面角A―CD―B 的平面角.

      ∴∠ADB = 90°, 即BD⊥AD.

      ∴BD⊥平面ADC.

      ∴BD⊥AC.

      ∴AC⊥平面BGD.

      ∴BG⊥AC .

      ∴∠BGD 是二面角B―AC―D 的平面角. 5 分

      在Rt△ADC 中,AD = a,DC = a,AC = 2a,

      在Rt

      即二面角B―AC―D的大小為……………………8分

      (2)∵AB//EF,

      ∴∠DEF(或其補角)是異面直線AB 與DE 所成的角. ………………9 分

      ∵AB =,

      ∴EF=  ak .

      又DC = a,CE = kCA = 2ak,

      ∴DF= DE =

      ………………4分

      ∴cos∠DEF=………………11分

      …………………………12分

      19.解:(1)依題意建立數學模型,設第n 次服藥后,藥在體內的殘留量為an(毫克)

      a1 = 220,a2 =220×1.4 ……………………2 分

      a4 = 220 + a2 (1-0.6) = 343.2 ……………………5 分

      (2)由an = 220 + 0.4an―1 (n≥2 ),

      可得

      所以()是一個等比數列,

      不會產生副作用……………………13分

      20.解:(1)由條件知:

      ……………………2分

      b=1,

      ∴橢圓C的方程為:……………………4分

      (2)依條件有:………………5分

      …………7分

      ,

      ………………7分

      …………………………9分

      由弦長公式得

          得

      =

       …………………………13分

      21.解:(1)當

      上單調遞增,

      ……………………5分

      (2)(1),

      需求一個,使(1)成立,只要求出

      的最小值,

      滿足

      上↓

      ↑,

      只需證明內成立即可,

      為增函數

      ,故存在與a有關的正常數使(1)成立。13分

       


      同步練習冊答案