已知等差數(shù)列的前三項為記前項和為. 查看更多

 

題目列表(包括答案和解析)

(12分)已知等差數(shù)列的前三項為記前項和為

(Ⅰ)設,求的值;

(Ⅱ)設,求的值.

查看答案和解析>>

已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(Ⅰ)設Sk=2550,求a和k的值;
(Ⅱ)設bn=
Snn
,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(Ⅰ)設Sk=2550,求a和k的值;
(Ⅱ)設bn=數(shù)學公式,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(Ⅰ)設Sk=2550,求a和k的值;
(Ⅱ)設bn=
Sn
n
,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

已知等差數(shù)列{an}的前三項為a-1,4,2a,記前n項和為Sn
(Ⅰ)設Sk=2550,求a和k的值;
(Ⅱ)設bn=,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1.B   2.C   3.A   4.D   5.C   6.D  7.B  8.C  9.A  10.D

二、填空題(每小題4分,共24分)

    l 1.192   12.286     13.   14.   15.840     l6.4;

三、解答題(本大題共6小題,共76分)

17.(本題12分)

解:(Ⅰ)

                         ………………………………(2分)

                 

   …………(4分)

                    

                                             …………………………………(6分)

       (Ⅱ)

               .                     ……………(8分)

              由已知條件

              根據(jù)正弦定理,得               …………………(10分)

                   ……………………(12分)

18.(本題12分)

解:(Ⅰ)在7人中選出3人,總的結果數(shù)是種           ………………(2分)

記“被選中的3人中至多有1名女生”為事件A,則A包含兩種情形:

              ①被選中的是1名女生,2名男生的結果數(shù)是種,

               ②被選中的是3名男生的結果數(shù)是種,           ………………(4分)

至多選中1名女生的概率為.  ……………(6分)

(Ⅱ)由題意知隨機變量可能的取值為:0,1,2,3,則有

      ……………………(8分)

的分布列

 

0

1

2

3

P

 

 

 

……………(10分)

 

的數(shù)學期望        … ……(12分)

19.(本題12分)

解:(Ⅰ)連接,以所在的直線為軸,軸,

建立如圖所示的空間直角坐標系.       …………………………………(2分)

    正四棱錐的底面邊長和側棱長都是2,

   

   的中點.

                                     …………(4分)

 

即異面直線所成的角為      ………(6分)

(Ⅱ)

是平面的一個法向量.        ……………………………(8分)

由(Ⅰ)得

設平面的一個法向量為

則由,得

,不妨設,

  得平面的一個法向量為.            ………………(10分)

二面角小于,

二面角的余弦值為.             ………………(12分)

20.(本題12分)

    解:(Ⅰ)由已知得,又,

                  .   …………………………(2分)

                  ,公差

                  由,得   …………………………(4分)

                    

.解得(舍去).

       .           …………………………(6分)

(Ⅱ)由

          …………………………(8分)

                      …………………………(9分)

   是等差數(shù)列.

    ………………………(11分)

            ……………………(12分)

21.(本題14分)

  解:(Ⅰ)依題意得

 

        .                  ………………………(2分)

            把(1,3)代入

            解得

橢圓的方程為.                 ………………………(4分)

(Ⅱ)由(Ⅰ)得,設,如圖所示

   點在橢圓上,

.       ①

點異于頂點,

、三點共線,可得

從而     …………………………(7分)

 ②  …………(8分)

將①式代入②式化簡得            …………(10分)

                                     …………(12分)

于是為銳角,為鈍角.

點B在以MN為直徑的圓內.                     ……………(14分)

 

22.(本題14分)

解:(Ⅰ),

                  令,得.          ………………(2分)

                  當時,上單調遞

時,上單調遞減,

                  而,

                  時,的值域是.    ……………(4分)

(Ⅱ)設函數(shù)上的值域是A,

若對任意.總存在1,使,

.                               ……………(6分)

①當時,

               函數(shù)上單調遞減.

              ,

時,不滿足;    ……………………(8分)

②當時,,

,得(舍去        ………………(9分)

(i)時,的變化如下表:

0

2

 

-

0

+

 

0

,解得.      …………………(11分)

(ii)當時,

       函數(shù)上單調遞減.

       ,

        時,不滿足.         …………………(13分)

        綜上可知,實數(shù)的取值范圍是.     ……………………(14分)

 


同步練習冊答案