⑤對(duì)任意的實(shí)數(shù)x1<0, x2<0且x1<x2.恒有.其中正確命題的序號(hào)是 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1,x2,滿足2f(x1)•f(x2)=f(x1+x2)+f(x1-x2)且f(0)≠0,則f(0)=
1
1
,此函數(shù)為
函數(shù)(填奇偶性).

查看答案和解析>>

(2008•南京模擬)已知函數(shù)y=f (x)的定義域?yàn)镽,f (27)=3,且對(duì)任意的實(shí)數(shù)x1,x2,必有f (x1•x2)=f (x1)•f (x2)  成立,寫出滿足條件的一個(gè)函數(shù)為
y=
3x
y=
3x

查看答案和解析>>

已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x1<x2都有f(x1)<f(x2),a,b∈R對(duì)于命題“若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)有下列結(jié)論:①此命題的逆命題為真命題;②此命題的否命題為真命題;③此命題的逆否命題為真命題;④此命題的逆命題和否命題有且只有一個(gè)真命題.其中正確結(jié)論的個(gè)數(shù)為(  )

查看答案和解析>>

已知集合M={f(x)|f2(x)-f2(y)=f(x+y)•f(x-y)},x,y∈R,有下列命題:
①若f1(x)=
1,x≥0
-1,x<0
則f1(x)∈M;
②若f2(x)=sinx,則f2(x)∈M;
③若f(x)∈M,y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
④若f(x)∈M,則對(duì)任意不等的實(shí)數(shù)x1、x2,總有
f1(x)-f2(x)
x1-x2
<0
;
⑤若f(x)∈M,則對(duì)任意的實(shí)數(shù)x1、x2,總有f(
x1+x2
2
)≤
f1(x)+f2(x)
2

其中是正確的命題有
 
.(寫出所有正確命題的編號(hào))

查看答案和解析>>

(2008•湖北模擬)關(guān)于函數(shù)f(x)=
e-x-2,x≤0
2ax-1,x>0
(a為常數(shù),且a>0)對(duì)于下列命題:
①函數(shù)f(x)的最小值為-1;
②函數(shù)f(x)在每一點(diǎn)處都連續(xù);
③函數(shù)f(x)在R上存在反函數(shù);
④函數(shù)f(x)在x=0處可導(dǎo);
⑤對(duì)任意的實(shí)數(shù)x1<0,x2<0且x1<x2,恒有f(
x1+x2
2
)<
f(x1)+f(x2)
2

其中正確命題的序號(hào)是
①②⑤
①②⑤

查看答案和解析>>

 

1.B  2.B  3.C  4.C  5.B  6.D  7.A  8.C  9.D  10.A

11.31003              12.60          13.      14.  15.①②⑤

16.解:(1)設(shè)“取出兩個(gè)紅球”為事件A,“取出一紅一白兩個(gè)球”為事件B,則

……2分

由題意得

則有,可得……4分

,∴m為奇數(shù)……6分

(2)設(shè)“取出兩個(gè)白球”為事件C,則……7分

由題意知,即有
可得到,從而m+n為完全平方數(shù)……9分

又m≥n≥4及m+n≤20得9≤m+n≤20

得到方程組:;

解得:,(不合題意舍去)……11分

故滿足條件的數(shù)組(m, n)只有一組(10,6)……12分

17.解:(1)∵,……2分

……4分

由于,故……6分

(2)由……8分

……10分

當(dāng)且僅當(dāng)tanA=tanB,即A=B時(shí),tanC取得最大值.

所以C的最大值為,此時(shí)為等腰三角形. ……12分

18.解:設(shè)裁員x人,可獲得的經(jīng)濟(jì)效益為y萬元,

……4分

依題意

又140<2a<420, 70<a<210. ……6分

(1)當(dāng)時(shí),x=a-70, y取到最大值;……8分

(2)當(dāng)時(shí),, y取到最大值;……10分

答:當(dāng)時(shí),裁員a-70人;當(dāng)時(shí),裁員人……12分

19.解法一:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得底面ABCD. 因?yàn)镾A=SB,所以AO=BO. 又,故為等腰直角三角形, 由三垂線定理,得

(2)由(1)知,依題設(shè),故,由,得 所以的面積 連結(jié)DB,得的面積 設(shè)D到平面SAB的距離為h,由,

,解得

設(shè)SD與平面SAB所成角為,則 所以直線SD與平面SAB所成的角為

解法二:(1)作,垂足為O,連結(jié)AO,由側(cè)面底面ABCD,得平面ABCD. 因?yàn)镾A=SB,所以AO=BO. 又為等腰直角三角形,

如圖,以O(shè)為坐標(biāo)原點(diǎn),OA為x軸正向,建立直角坐標(biāo)系O―xyz, ,所以

(2)取AB中點(diǎn)E,. 連結(jié)SE,取SE中點(diǎn)G,連結(jié)OG,

,OG與平面SAB內(nèi)兩條相交直線SE、AB垂直,所以平面SAB.的夾角記為,SD與平面SAB所成的角記為,則互余.

所以直線SD與平面SAB所成的角為

20.解:(1)∵焦點(diǎn)F為(1,0),過點(diǎn)F且與拋物線交于點(diǎn)A、B的直線可設(shè)為,代入拋物線得:,則有……2分

進(jìn)而……4分

,

為鈍角,故不是直角三角形.……6分

(2)由題意得AB的方程為

代入拋物線,求得……8分

假設(shè)拋物線上存在點(diǎn),使為直角三角形且C為直角,此時(shí),以AC為直徑的圓的方程為,將A、B、C三點(diǎn)的坐標(biāo)代入得:

整理得:……10分

解得對(duì)應(yīng)點(diǎn)B,對(duì)應(yīng)點(diǎn)C……12分

則存在使為直角三角形.

故滿足條件的點(diǎn)C有一個(gè):……13分

 

∴當(dāng)時(shí),h(t)單調(diào)遞增,∴h(t)>h(1)=0

于是……②

由①、②可知……10分

所以,,即……11分

(3)由(2)可知

中令n=1, 2, 3, …, 2007,并將各式相加得

……14分

 

 


同步練習(xí)冊答案