題目列表(包括答案和解析)
假設(shè)一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖,則這些點將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 90.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
年齡/周歲 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.6 | 173.0 |
(1)作出這些數(shù)據(jù)的散點圖;
(2)求出這些數(shù)據(jù)的回歸方程;
(3)對于這個例子,你如何解釋回歸系數(shù)的含義?
(4)用下一年的身高減去當年的身高,計算他每年身高的增長數(shù),并計算他從3~16歲身高的年均增長數(shù).
(5)解釋一下回歸系數(shù)與每年平均增長的身高之間的聯(lián)系.
想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)散點圖,這些點將不會落在一條直線上.但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:
年齡 /周歲 |
3 |
4 |
5 |
6 |
身高 /cm |
90.8 |
97.6 |
104.2 |
110.9 |
年齡 /周歲 |
7 |
8 |
9 |
10 |
身高 /cm |
115.6 |
122.0 |
128.5 |
134.2 |
年齡 /周歲 |
11 |
12 |
13 |
14 |
身高 /cm |
140.8 |
147.6 |
154.2 |
160.9 |
年齡 /周歲 |
15 |
16 |
||
身高 /cm |
167.6 |
173.0 |
(1)作出這些數(shù)據(jù)的散點圖.
(2)求出這些數(shù)據(jù)的回歸方程.
(3)對于這個例子,你如何解釋斜率的含義?
(4)用下一年的身高減去當年的身高,計算每年身高的增長數(shù),并計算從3到16歲身高的平均增長數(shù).
(5)解釋一下斜率與每年平均增長的身高之間的聯(lián)系.
π |
2 |
x |
|
|
|
|
| ||||||||||||||||
ωx+φ | 0 |
|
π |
|
2π | ||||||||||||||||
Asin(ωx+φ) | 0 | 2 | 0 | -2 |
π |
3 |
5π |
12 |
(本小題滿分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展開式中x的系數(shù)為11.
(1)求x2的系數(shù)的最小值;
(2)當x2的系數(shù)取得最小值時,求f (x)展開式中x的奇次冪項的系數(shù)之和.
解: (1)由已知+2=11,∴m+2n=11,x2的系數(shù)為
+22=+2n(n-1)=+(11-m)(-1)=(m-)2+.
∵m∈N*,∴m=5時,x2的系數(shù)取最小值22,此時n=3.
(2)由(1)知,當x2的系數(shù)取得最小值時,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.設(shè)這時f (x)的展開式為f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
兩式相減得2(a1+a3+a5)=60, 故展開式中x的奇次冪項的系數(shù)之和為30.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com