(Ⅱ)設(shè)的中點(diǎn)為.求證:平面, 查看更多

 

題目列表(包括答案和解析)














(Ⅰ)求證:平面
(Ⅱ)設(shè)的中點(diǎn)為,求證:平面;
(Ⅲ)求四棱錐的體積.

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,動(dòng)點(diǎn)P到定點(diǎn)(0,
3
)距離與到定直線:y=
4
3
3
的距離之比為
3
2
.設(shè)動(dòng)點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與交于A,B兩點(diǎn),當(dāng)|
AB
|=
8
2
5
時(shí),求實(shí)數(shù)k
的值.
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時(shí),恒有|
OA
|>|
OB
|.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長(zhǎng)為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點(diǎn),點(diǎn)P為圓C1上不同于A、B的任意一點(diǎn),直線PA、PB交y軸于M、N點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論;
(3)若△RST的頂點(diǎn)R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點(diǎn)R的縱坐標(biāo)的范圍.

查看答案和解析>>

在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
1
4
x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
(1)過點(diǎn),A(p0,
1
4
p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
|p0|
2
;
(2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
1
4
p
2
1
),E′(p2,
1
4
p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)設(shè)D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

查看答案和解析>>

在平面直角坐標(biāo)系中,已知曲線C上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求曲線C的方程;
(2)設(shè)過(0,-2)的直線l與曲線C交于A、B兩點(diǎn),以線段AB為直徑作圓.試問:該圓能否經(jīng)過坐標(biāo)原點(diǎn)?若能,請(qǐng)寫出此時(shí)直線l的方程,并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案