在平面直角坐標系中,已知曲線C上任意一點P到兩個定點F1(-
3
,0)
F2(
3
,0)
的距離之和為4.
(1)求曲線C的方程;
(2)設過(0,-2)的直線l與曲線C交于A、B兩點,以線段AB為直徑作圓.試問:該圓能否經(jīng)過坐標原點?若能,請寫出此時直線l的方程,并證明你的結(jié)論;若不是,請說明理由.
分析:(1)利用橢圓的定義即可求出;
(2)先假設符合條件的直線l存在,一方面可利用
OA
OB
=0;另一方面把直線的方程與橢圓的方程聯(lián)立,在△>0的條件下可利用根與系數(shù)的關(guān)系得到關(guān)系式,進而即可得出答案.
解答:解:(1)根據(jù)橢圓的定義,可知動點P的軌跡為橢圓,
其中a=2,c=
3
,則b=
a2-c2
=1

所以動點P的軌跡方程為
x2
4
+y2=1

(2)當直線l的斜率不存在時,不滿足題意.
當直線l的斜率存在時,設直線l的方程為y=kx-2,設A(x1,y1),B(x2,y2),
OA
OB
=0
,則x1x2+y1y2=0.
∵y1=kx1-2,y2=kx2-2,∴y1y2=k2x1x2-2k(x1+x2)+4
∴(1+k2)x1x2-2k(x1+x2)+4=0.…①
由方程組
x2
4
+y2=1
y=kx-2
得(1+4k2)x2-16kx+12=0.
∵△=162k2-4×12×(1+4k2)>0,∴k2
3
4
…②
x1+x2=
16k
1+4k2
,x1x2=
12
1+4k2
,代入①,得(1+k2)
12
1+4k2
-2k
16k
1+4k2
+4=0
.即k2=4,解得k=2或k=-2,滿足②式.
因此存在直線l,其方程為y=2x-2或y=-2x-2.
點評:熟練掌握圓錐曲線的定義與性質(zhì)、兩條垂直的充要條件、直線方程與圓錐曲線方程相交問題的處理方法是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案