如圖.B為橢圓右頂點(diǎn).橢圓上點(diǎn)C與A關(guān)于原點(diǎn)對稱.過點(diǎn)A作兩條直線交橢圓P.Q.交x軸與,求證:存在實(shí)數(shù) 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長為4(
2
+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
(Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,已知直線l:x=my+1過橢圓C:
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,拋物線:x2=4
3
y
的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線l交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l交y軸于點(diǎn)M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當(dāng)m變化時(shí),探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;
(Ⅲ)連接AE、BD,試證明當(dāng)m變化時(shí),直線AE與BD相交于定點(diǎn)N(
5
2
,0)

查看答案和解析>>

精英家教網(wǎng)如圖,過橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點(diǎn)F1作x軸的垂線交橢圓于點(diǎn)P,
點(diǎn)A和點(diǎn)B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),OP∥AB.
(1)求橢圓的離心率e;
(2)過右焦點(diǎn)F2作一條弦QR,使QR⊥AB.若△F1QR的面積為20
3
,求橢圓的方程.

查看答案和解析>>

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足AB⊥AF2.且F1為BF2的中點(diǎn).
(1)求橢圓C的離心率;
(2)D是過A,B,F(xiàn)2三點(diǎn)的圓上的點(diǎn),D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程.

查看答案和解析>>

如圖,橢圓中心在坐標(biāo)原點(diǎn),點(diǎn)F為左焦點(diǎn),點(diǎn)B為短軸的上頂點(diǎn),點(diǎn)A為長軸的右頂點(diǎn).當(dāng)
FB
BA
時(shí),橢圓被稱為“黃金橢圓”,則“黃金橢圓”的離心率e等于( 。

查看答案和解析>>


同步練習(xí)冊答案