(2) 已知點在曲線上.過點作曲線的兩條弦.且的斜率滿足.試推斷:動直線有何變化規(guī)律.證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知點B(-1,0)、C(1,0),平面上的動點P滿足|
CP
|•|
BC
|=
BP
BC
,記動點P的軌跡為曲線E.過點C作直線交曲線E于兩點M、N,G為線段MN的中點,過點G作x軸的平行線與曲線E在點M處的切線交與點A.
(Ⅰ)求曲線E的方程.
(Ⅱ)試問點A是否恒在一條定直線上?證明你的結(jié)論.

查看答案和解析>>

已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分.

查看答案和解析>>

已知點F(1,0),直線l:x=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)已知點A(m,2)在曲線C上,過點A作曲線C的兩條弦AD,AE,且AD,AE的斜率k1、k2滿足k1•k2=2,試推斷:動直線DE是否過定點?證明你的結(jié)論.

查看答案和解析>>

已知點F(1,0),直線L:x=-1,P為平面上的動點,過點P作直線L的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求點P的軌跡C的方程;
(2)是否存在正數(shù)m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有
FA
FB
<0
?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

已知點A(m,2)在曲線C:y2=4x上,過點A作曲線C的兩條弦AD和AE,且AD⊥AE,則直線DE過定點
(5,-2)
(5,-2)

查看答案和解析>>


同步練習(xí)冊答案