9.D.記.目標(biāo)函數(shù)變形可得.?dāng)?shù)形結(jié)合可得斜率或.解得. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>

(本小題滿分13分)

已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。

查看答案和解析>>

(2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
1
x+a
>0恒成立,求實數(shù)a的取值范圍.”有兩位同學(xué)用數(shù)形結(jié)合的方法分別提出了自己的解題思路和答案:
學(xué)生甲:在一個坐標(biāo)系內(nèi)作出函數(shù)f(x)=
1
x+a
和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學(xué)生乙:在坐標(biāo)平面內(nèi)作出函數(shù)f(x)=x+a+
1
x+a
的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側(cè)的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學(xué)的解題方法和結(jié)論的判斷都正確的是(  )

查看答案和解析>>

已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an.?dāng)?shù)形結(jié)合可得a1=0,a2=1,…則a3=
 
,當(dāng)n是奇數(shù)時,an=
 

查看答案和解析>>

(2011•通州區(qū)一模)設(shè)點(x,y)在不等式組
1≤x+y≤2
-1≤x-y≤1
的可行域D內(nèi).則目標(biāo)函數(shù)z=2x+y的最大值是( 。

查看答案和解析>>


同步練習(xí)冊答案