題目列表(包括答案和解析)
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
已知曲線上動點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)為圓心作圓:,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時圓的方程.
【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時,檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時,;,化簡得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè).
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)時,取得最小值為.
計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.
故圓T的方程為:
n |
n |
x2+(y+3)2 |
x2+(y-3)2 |
n |
n |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com