即函數(shù)的值域是. 查看更多

 

題目列表(包括答案和解析)

函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052523475947037509/SYS201205252349521259162639_ST.files/image002.png">,且滿足對(duì)于任意,有

⑴求的值;

⑵判斷的奇偶性并證明;

⑶如果,且上是增函數(shù),求的取值范圍.

【解析】(Ⅰ) 通過(guò)賦值法,,求出f(1)0;

(Ⅱ) 說(shuō)明函數(shù)f(x)的奇偶性,通過(guò)令,得.令,得,推出對(duì)于任意的x∈R,恒有f(-x)=f(x),f(x)為偶函數(shù).

(Ⅲ) 推出函數(shù)的周期,根據(jù)函數(shù)在[-2,2]的圖象以及函數(shù)的周期性,即可求滿足f(2x-1)≥12的實(shí)數(shù)x的集合.

 

查看答案和解析>>

若函數(shù)f(x)的定義域與值域都為同一區(qū)間D,則稱函數(shù)f(x)為區(qū)間D上的“同勢(shì)”函數(shù).已知函數(shù)f(x)=x2-2x+1是區(qū)間D上的“同勢(shì)”函數(shù),則此區(qū)間可以是
[0,
3+
5
2
]或[0,1]或[
3+
5
2
,+∞)等
[0,
3+
5
2
]或[0,1]或[
3+
5
2
,+∞)等
.(只要寫出一個(gè)你認(rèn)為正確的區(qū)間即可)

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.

(Ⅰ)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(Ⅱ)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;

(Ⅲ)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)數(shù)學(xué)公式,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案