∵.即∴ ∴ 查看更多

 

題目列表(包括答案和解析)

即將開(kāi)工的上海與周邊城市的城際列車鐵路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來(lái)回16次;如果每次拖7節(jié)車廂,則每天能來(lái)回10次.每天來(lái)回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù),每節(jié)車廂一次能載客110人,試問(wèn)每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù).(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))

查看答案和解析>>

即將開(kāi)工的上海與周邊城市的城際列車鐵路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來(lái)回16次;如果每次拖7節(jié)車廂,則每天能來(lái)回10次.每天來(lái)回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù),每節(jié)車廂一次能載客110人,試問(wèn)每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù).(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))

查看答案和解析>>

即將開(kāi)工的上海與周邊城市的城際列車鐵路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來(lái)回16次;如果每次拖7節(jié)車廂,則每天能來(lái)回10次.每天來(lái)回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù),每節(jié)車廂一次能載客110人,試問(wèn)每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù).(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))

查看答案和解析>>

即將開(kāi)工的上海與周邊城市的城際列車鐵路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來(lái)回16次;如果每次拖7節(jié)車廂,則每天能來(lái)回10次.每天來(lái)回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù),每節(jié)車廂一次能載客110人,試問(wèn)每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù).(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))

查看答案和解析>>

即將開(kāi)工的上海與周邊城市的城際列車鐵路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測(cè)算,如果一列火車每次拖4節(jié)車廂,每天能來(lái)回16次;如果每次拖7節(jié)車廂,則每天能來(lái)回10次.每天來(lái)回次數(shù)是每次拖掛車廂個(gè)數(shù)的一次函數(shù),每節(jié)車廂一次能載客110人,試問(wèn)每次應(yīng)拖掛多少節(jié)車廂才能使每天營(yíng)運(yùn)人數(shù)最多?并求出每天最多的營(yíng)運(yùn)人數(shù).(注:營(yíng)運(yùn)人數(shù)指火車運(yùn)送的人數(shù))

查看答案和解析>>

 

1.(1)因?yàn)?sub>,所以

      又是圓O的直徑,所以

      又因?yàn)?sub>(弦切角等于同弧所對(duì)圓周角)

      所以所以

      又因?yàn)?sub>,所以相似

      所以,即

  (2)因?yàn)?sub>,所以

       因?yàn)?sub>,所以

       由(1)知:。所以

       所以,即圓的直徑

       又因?yàn)?sub>,即

     解得

2.依題設(shè)有:

 令,則

 

 

3.將極坐標(biāo)系內(nèi)的問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系內(nèi)的問(wèn)題

  點(diǎn)的直角坐標(biāo)分別為

  故是以為斜邊的等腰直角三角形,

  進(jìn)而易知圓心為,半徑為,圓的直角坐標(biāo)方程為

      ,即

  將代入上述方程,得

  ,即

4.假設(shè),因?yàn)?sub>,所以

又由,則,

所以,這與題設(shè)矛盾

又若,這與矛盾

綜上可知,必有成立

同理可證也成立

命題成立

5. 解:由a1=S1,k=.下面用數(shù)學(xué)歸納法進(jìn)行證明.

1°.當(dāng)n=1時(shí),命題顯然成立;

2°.假設(shè)當(dāng)n=k(kN*)時(shí),命題成立,

即1?2?3+2?3?4+……+ k(k+1)(k+2)= k(k+1)(k+2)(k+3),

則n=k+1時(shí),1?2?3+2?3?4+……+ k(k+1)(k+2)+(k+1)(k+2)(k+3)= k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)

=( k+1)(k+1+1)(k+1+2)(k+1+3)

即命題對(duì)n=k+1.成立

由1°, 2°,命題對(duì)任意的正整數(shù)n成立.

6.(1)因?yàn)?sub>,

      ,所以

       故事件A與B不獨(dú)立。

   (2)因?yàn)?sub>

      

       所以

 

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊(cè)答案