題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域為
由,得
當x變化時,,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當時,取,有,故時不合題意.當時,令,即
令,得
①當時,,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當時,,對于,,故在上單調(diào)遞增.因此當取時,,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數(shù),,
(Ⅰ)當時,若在上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對:當是整數(shù)時,存在,使得是的最大值,是的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當時,,當時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。
已知函數(shù),.
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構(gòu)造一個定義在,且上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構(gòu)成以x0為首項的等差數(shù)列.
(本題滿分14分)
已知函數(shù),,
(Ⅰ)當時,若在上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對:當是整數(shù)時,存在,使得是的最大值,是的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當時,,當時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。
(本題滿分14分)
已知函數(shù),,
(Ⅰ)當時,若在上單調(diào)遞增,求的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對:當是整數(shù)時,存在,使得是的最大值,是的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對,試構(gòu)造一個定義在,且上的函數(shù),使當時,,當時,取得最大值的自變量的值構(gòu)成以為首項的等差數(shù)列。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com