設(shè)函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為(  )
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
,
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

BADD  CCCB  AADB

二、填空題:本大題共4小 題,每小題4分,共16分。

13.6ec8aac122bd4f6e

14.6ec8aac122bd4f6e

15.-2

16.73

20090406

17.解:(1)6ec8aac122bd4f6e   2分

       6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       6ec8aac122bd4f6e   6分

   (2)6ec8aac122bd4f6e

       根據(jù)正弦函數(shù)的圖象可得:

       當(dāng)6ec8aac122bd4f6e時(shí),

       6ec8aac122bd4f6e取最大值1   8分

       當(dāng)6ec8aac122bd4f6e時(shí)

       6ec8aac122bd4f6e   10分

       6ec8aac122bd4f6e

       即6ec8aac122bd4f6e   12分

18.解:先后拋擲兩枚骰子可能出現(xiàn)的情況:(1,1),(1,2),(1,3),…,(1,6);(2,1)(2,2),(2,3),…,(2,6);…;(6,1),(6,2),(6,3),…,(6,6),基本事件總數(shù)為36。   2分

   (1)在上述基本事件中,“點(diǎn)數(shù)之和等于3”的事件只有(1,2),(2,1)兩個(gè)可能,點(diǎn)數(shù)之和等于2的只有(1,1)一個(gè)可能的結(jié)果,記點(diǎn)數(shù)之和不大于3為事件A1,則事件A1發(fā)生的概率為:6ec8aac122bd4f6e   4分

       6ec8aac122bd4f6e事件“出現(xiàn)的點(diǎn)數(shù)之和大于3”發(fā)生的概率為

       6ec8aac122bd4f6e   7分

   (2)與(1)類似,在上述基本事件中,“點(diǎn)數(shù)之積是3的倍數(shù)”的事件有20個(gè)可能的結(jié)果。

       所以事件“出現(xiàn)的點(diǎn)數(shù)之積是3的倍數(shù)”發(fā)生的概率為

       6ec8aac122bd4f6e   12分

    <option id="iq6ou"><pre id="iq6ou"></pre></option>
    <ul id="iq6ou"></ul>

           6ec8aac122bd4f6eBCD是等邊三角形,

           6ec8aac122bd4f6eE是CD的中點(diǎn),6ec8aac122bd4f6e

           而AB//CD,6ec8aac122bd4f6e   2分

           又6ec8aac122bd4f6e平面ABCD,

           6ec8aac122bd4f6e

           而呵呵平面PAB。   4分

           又平面PAB。   6分

       (2)由(1)知,平面PAB,所以

           又是二面角A―BE―P的平面角  9分

           平面ABCD,

          

           在

          

           故二面角A―BE―P的大小是   12分

    20.解:(1)

           是首項(xiàng)為的等比數(shù)列   2分

              4分

           當(dāng)仍滿足上式。

          

           注:未考慮的情況,扣1分。

       (2)由(1)得,當(dāng)時(shí),

              8分

          

          

           兩式作差得

          

          

              12分

     

     

    21.解:(1)因?yàn)?sub>且AB通過(guò)原點(diǎn)(0,0),所以AB所在直線的方程為

           由得A、B兩點(diǎn)坐標(biāo)分別是A(1,1),B(-1,-1)。

    <noscript id="iq6ou"></noscript>
    <delect id="iq6ou"><pre id="iq6ou"></pre></delect>
    <center id="iq6ou"></center>
    <blockquote id="iq6ou"></blockquote>

           又的距離。

              4分

       (2)設(shè)AB所在直線的方程為

           由

           因?yàn)锳,B兩點(diǎn)在橢圓上,所以

          

           即   5分

           設(shè)A,B兩點(diǎn)坐標(biāo)分別為,則

          

           且   6分

          

             8分

           又的距離,

           即   10分

          

           邊最長(zhǎng)。(顯然

           所以AB所在直線的方程為   12分

    22.解:(1)

           當(dāng)

           令   3分

           當(dāng)的變化情況如下表:

          

    0

    2

    -

    0

    +

    0

    -

    0

    +

    單調(diào)遞減

    極小值

    單調(diào)遞增

    極大值

    單調(diào)遞減

    極小值

    單調(diào)遞增

           所以上是增函數(shù),

           在區(qū)間上是減函數(shù)   6分

       (2)的根。

           處有極值。

           則方程有兩個(gè)相等的實(shí)根或無(wú)實(shí)根,

              8分

           解此不等式,得

           這時(shí),是唯一極值。

           因此滿足條件的   10分

           注:若未考慮進(jìn)而得到,扣2分。

       (3)由(2)知,當(dāng)恒成立。

           當(dāng)上是減函數(shù),

           因此函數(shù)   12分

           又上恒成立。

          

           于是上恒成立。

          

           因此滿足條件的   14分

     

     


    同步練習(xí)冊(cè)答案
    <menu id="iq6ou"></menu>
    <menu id="iq6ou"></menu>
  • <center id="iq6ou"></center>