21.[解析](1)..題意.知. 查看更多

 

題目列表(包括答案和解析)

已知,,分別為三個內角,,的對邊,.

(Ⅰ)求;

(Ⅱ)若=2,的面積為,求,.

【命題意圖】本題主要考查正余弦定理應用,是簡單題.

【解析】(Ⅰ)由及正弦定理得

   

由于,所以,

,故.

(Ⅱ) 的面積==,故=4,

 故=8,解得=2

 

查看答案和解析>>

如圖,D,E分別是△ABC邊AB,AC的中點,直線DE交△ABC的外接圓與F,G兩點,若CF∥AB,證明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命題意圖】本題主要考查線線平行判定、三角形相似的判定等基礎知識,是簡單題.

【解析】(Ⅰ) ∵D,E分別為AB,AC的中點,∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四邊形,

∴CF=BD=AD,   連結AF,∴ADCF是平行四邊形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

已知函數,其中

(1)若是函數的極值點,求實數的值;

(2)若對任意的為自然對數的底數)都有成立,求實數的取值范圍.

【解析】(1)根據建立關于a的方程求a即可.

(2)本題要分別求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后

,解關于a的不等式即可.

 

查看答案和解析>>

已知△中,A,B,C。的對邊分別為a,b,c,且

(1)判斷△的形狀,并求sinA+sinB的取值范圍。

(2)若不等式,對任意的滿足題意的a,b,c都成立,求實數k的取值范圍.

【解析】第一問利用余弦定理和向量的數量積公式得到

判定形狀,并且求解得到sinA+sinB的取值范圍

第二問中,對于不等式恒成立問題,分離參數法,得到結論。

 

查看答案和解析>>

中,已知 ,面積

(1)求的三邊的長;

(2)設(含邊界)內的一點,到三邊的距離分別是

①寫出所滿足的等量關系;

②利用線性規(guī)劃相關知識求出的取值范圍.

【解析】第一問中利用設中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結合區(qū)域得到最值。

 

查看答案和解析>>


同步練習冊答案