. . 查看更多

 

題目列表(包括答案和解析)

..如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長(zhǎng)線上,N在AD的延長(zhǎng)線上,且對(duì)角線MN過(guò)C點(diǎn)。已知AB=3米,AD=2米。
(1)設(shè)(單位:米),要使花壇AMPN的面積大于32平方米,求的取值范圍;


 
(2)若(單位:米),則當(dāng)AM,AN的長(zhǎng)度分別是多少時(shí),花壇AMPN的面積最大?并求出最大面積。

 

查看答案和解析>>

..(本小題滿分12分)
已知:,
函數(shù).
(1)化簡(jiǎn)的解析式,并求函數(shù)的單調(diào)遞減區(qū)間;
(2)在△ABC中,分別是角A,B,C的對(duì)邊,已知,△ABC的面積為,求的值.

查看答案和解析>>

..在中,分別為內(nèi)角所對(duì)的邊,且
現(xiàn)給出三個(gè)條件:①; ②;③.試從中選出兩個(gè)可以確定的條件,并以此為依據(jù)求的面積.(只需寫(xiě)出一個(gè)選定方案即可)你選擇的條件是            (用序號(hào)填寫(xiě));由此得到的的面積為        

查看答案和解析>>

..(滿分8分)已知數(shù)列,
(1)計(jì)算
(2)根據(jù)(1)的計(jì)算結(jié)果,猜想的表達(dá)式,并用數(shù)學(xué)歸納法進(jìn)行證明。

查看答案和解析>>

..(本小題滿分12分)
數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,總有成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

 

題號(hào)

答案

1.解析:命題“”的否命題是:“”,

故選C.

2.解析:由已知,得:,故選

3.解析:若,則,解得.故選

4.解析:由題意得,

.故選

5.解析:設(shè)成績(jī)?yōu)?sub>環(huán)的人數(shù)是,由平均數(shù)的概念,得:.故選

6.解析:是偶函數(shù);是指數(shù)函數(shù);是對(duì)數(shù)函數(shù).故選

7.解析:①的三視圖均為正方形;②的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為圓;④的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為正方形.故選

8.解析:程序的運(yùn)行結(jié)果是,選

9.解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉?lái)的.答案:

10.解析:特殊值法:令

.故選

 

題號(hào)

11

12

13

14

15

答案

11.解析:

12.解析:令,則,令,則,

同理得即當(dāng)時(shí),的值以為周期,

所以

13.解析:由圖象知:當(dāng)函數(shù)的圖象過(guò)點(diǎn)時(shí),

取得最大值為2.

14. (坐標(biāo)系與參數(shù)方程選做題)解析:將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,圓上的動(dòng)點(diǎn)到直線的距離的最大值就是圓心到直線的距離再加上半徑.故填

15. (幾何證明選講選做題)解析:連結(jié),

則在中:

,所以,

三.解答題:本大題共6小題,滿分80分.解答須寫(xiě)出文字說(shuō)明.證明過(guò)程和演算步驟.

16.析:主要考察三角形中的邊角關(guān)系、向量的坐標(biāo)運(yùn)算、二次函數(shù)的最值.

解:(1)∵,∴,     ………………3分

又∵,∴.    ……………………………………………5分

(2)   ……………………………………………6分

,  ………………………8分

,∴.   ……………10分

∴當(dāng)時(shí),取得最小值為.   …………12分

 

17.析:主要考察立體幾何中的位置關(guān)系、體積.

解:(1)證明:連結(jié),則//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴,

.  …………………………………………5分

(2)證明:作的中點(diǎn)F,連結(jié)

的中點(diǎn),∴,

∴四邊形是平行四邊形,∴ . ………7分

的中點(diǎn),∴

,∴

∴四邊形是平行四邊形,//

,,

∴平面.  …………………………………9分

平面,∴.  ………………10分

(3). ……………………………11分

.  ……………………………14分

 

18.析:主要考察事件的運(yùn)算、古典概型.

解:設(shè)“朋友乘火車(chē)、輪船、汽車(chē)、飛機(jī)來(lái)”分別為事件,則,,,且事件之間是互斥的.

(1)他乘火車(chē)或飛機(jī)來(lái)的概率為………4分

(2)他乘輪船來(lái)的概率是,

所以他不乘輪船來(lái)的概率為. ………………8分 

(3)由于,

所以他可能是乘飛機(jī)來(lái)也可能是乘火車(chē)或汽車(chē)來(lái)的. …………………12分 

19.析:主要考察函數(shù)的圖象與性質(zhì),導(dǎo)數(shù)的應(yīng)用.

解:(1)由函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),得,………………1分

,∴. …………2分

,∴. ……………………………4分

,即.  ……………………6分

. ……………………………………………………7分

 (2)由(1)知,∴

,∴.   …………………9分

0

+

0

極小

極大

.  ………………………14分

 

20.析:主要考察直線.圓的方程,直線與圓的位置關(guān)系.

解:(1)(法一)∵點(diǎn)在圓上,    …………………………2分

∴直線的方程為,即.   ……………………………5分

(法二)當(dāng)直線垂直軸時(shí),不符合題意.     ……………………………2分

當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為,即

則圓心到直線的距離,即:,解得,……4分

∴直線的方程為.    ……………………………………………5分

(2)設(shè)圓,∵圓過(guò)原點(diǎn),∴

∴圓的方程為.…………………………7分

∵圓被直線截得的弦長(zhǎng)為,∴圓心到直線的距離:

.   …………………………………………9分

整理得:,解得. ……………………………10分

,∴.   …………………………………………………………13分

∴圓.  ……………………………………14分

 

21.析:主要考察等差、等比數(shù)列的定義、式,求數(shù)列的和的方法.

解:(1)設(shè)的公差為,則:,,

,∴,∴. ………………………2分

.  …………………………………………4分

(2)當(dāng)時(shí),,由,得.     …………………5分

當(dāng)時(shí),,

,即.  …………………………7分

.   ……………………………………………………………8分

是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分

(3)由(2)可知:.   ……………………………10分

. …………………………………11分

.    ………………………………………13分

.  …………………………………………………14分

 

 

 


同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�