12.已知拋物線有相同的焦點F.點A是兩曲線的交點.且AF⊥x軸.則雙曲線的離心率為 查看更多

 

題目列表(包括答案和解析)

已知拋物線有相同的焦點F,點A是兩曲線的交點,且AF⊥軸,則雙曲線的離心率為(         )

A.            B.         C.          D.

 

查看答案和解析>>

已知拋物線有相同的焦點F,點A是兩曲線的交點,且AF軸,則雙曲線的離心率為          

 

查看答案和解析>>

已知拋物線有相同的焦點F,點A是兩曲線的交點,且AF⊥軸,則雙曲線的離心率為(         )

 A.         B.         C.          D.

 

查看答案和解析>>

已知拋物線有相同的焦點F,點A是兩曲

線的交點,且AF⊥x軸,則雙曲線的離心率為(    )

A.        B.        C.       D.

 

查看答案和解析>>

已知拋物線有相同的焦點F,點A是兩曲線的交點,且AF⊥x軸,則雙曲線的離心率為(   )

A.B.C.D.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又,.(6分)

   (2)由,

.(6分)

18.證明:(1)因為在正方形ABCD中,AC=2

<i id="dy5w3"></i>

<cite id="dy5w3"></cite>

可得:在△PAB中,PA2+AB2=PB2=6。

所以PA⊥AB

同理可證PA⊥AD

故PA⊥平面ABCD (4分)

   (2)取PE中點M,連接FM,BM,

連接BD交AC于O,連接OE

∵F,M分別是PC,PF的中點,

∴FM∥CE,

又FM面AEC,CE面AEC

∴FM∥面AEC

又E是DM的中點

OE∥BM,OE面AEC,BM面AEC

∴BM∥面AEC且BM∩FM=M

∴平面BFM∥平面ACE

又BF平面BFM,∴BF∥平面ACE (4分)

   (3)連接FO,則FO∥PA,因為PA⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

SㄓACD=1,

    ∴VFACD=VF――ACD=  (4分)

19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

   (2)有方程組得公共弦的方程:

圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

∴弦長l=(定值)               (5分)

20.解:(1),

當(dāng)時,取最小值,

.(6分)

   (2)令

,(不合題意,舍去).

當(dāng)變化時,的變化情況如下表:

遞增

極大值

遞減

內(nèi)有最大值

內(nèi)恒成立等價于內(nèi)恒成立,

即等價于,

所以的取值范圍為.(6分)

21.解:(1),

,

數(shù)列是首項為,公比為的等比數(shù)列,

當(dāng)時,,

     (6分)

   (2),

當(dāng)時,;

當(dāng)時,,…………①

,………………………②

得:

也滿足上式,

.(6分)

22.解:(1)由題意橢圓的離心率

        

∴橢圓方程為……2分

又點在橢圓上

         ∴橢圓的方程為(4分)

(2)設(shè)

消去并整理得……6分

∵直線與橢圓有兩個交點

,即……8分

中點的坐標(biāo)為……10分

設(shè)的垂直平分線方程:

……12分

將上式代入得

   即 

的取值范圍為…………(8分)

 

 

 


同步練習(xí)冊答案