已知二次函數(shù)滿足條件: 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)滿足條件:對(duì)任意實(shí)數(shù)都有;且當(dāng)時(shí),總有成立。

   (1)求的值;

   (2)求的取值范圍。

查看答案和解析>>

已知二次函數(shù)滿足條件:

;②的最小值為。

(1)求函數(shù)的解析式;

(2)設(shè)數(shù)列的前項(xiàng)積為,且,求數(shù)列的通項(xiàng)公式;

(3)在(2)的條件下,若的等差中項(xiàng),試問(wèn)數(shù)列中第幾項(xiàng)的值最?求出這個(gè)最小值。

 

查看答案和解析>>

已知二次函數(shù)滿足條件:①;②的最小值為。
(1)求函數(shù)的解析式;
(2)設(shè)數(shù)列的前項(xiàng)積為,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若的等差中項(xiàng),試問(wèn)數(shù)列中第幾項(xiàng)的值最?求出這個(gè)最小值。

查看答案和解析>>

已知二次函數(shù)滿足條件:① ;  ② 的最小值為.

(1)求函數(shù)的解析式;

(2)設(shè)數(shù)列的前項(xiàng)積為,且,求數(shù)列的通項(xiàng)公式;

(3)在(2)的條件下, 若的等差中項(xiàng), 試問(wèn)數(shù)列中第幾項(xiàng)的值最小? 求出這個(gè)最小值.

查看答案和解析>>

已知二次函數(shù)滿足條件 :①對(duì)任意x∈R,均有 ②函數(shù)的圖像與y=x相切.

(1)求的解析式;

(2) 若函數(shù),是否存在常數(shù)t (t≥0),當(dāng)x∈[t,10]時(shí),的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t,若存在,請(qǐng)求出t值,若不存在,請(qǐng)說(shuō)明理由(注: 的區(qū)間長(zhǎng)度為).

查看答案和解析>>

 

一、選擇題:

    1. <ins id="idtbm"></ins>
    2. 1,3,5

      二、填空題

      13.       14.190     15.②④            16.

      三、解答題

      17.(1)

                                  …………4分

      ∵A為銳角,∴,∴,

      ∴當(dāng)時(shí),                           …………6分

         (2)由題意知,∴

      又∵,∴,∴,              …………8分

      又∵,∴,                                …………9分

      由正弦定理         …………12分

      18.解:(I)由函數(shù)

                             …………2分

                                    …………4分

                                                         …………6分

         (II)由,

                                  …………8分

      ,                                             …………10分

                                                        

      故要使方程           …………12分

      19.(I)連接BD,則AC⊥BD,

      ∵D1D⊥地面ABCD,∴AC⊥D1D

      ∴AC⊥平面BB1D1D,

      ∵D1P平面BB1D1D,∴D1P⊥AC.…………4分

         (II)解:設(shè)連D1O,PO,

      ∵D1A=D1C,∴D1O⊥AC,同理PO⊥AC,

      又∵D1O∩PO=0,

      ∴AC⊥平面POD1 ………………6分

      ∵AB=2,∠ABC=60°,

      ∴AO=CO=1,BO=DO=,

      ∴D1O=

                              …………9分

      ,                        …………10分

          …………12分

      20.解:(I)當(dāng) ;                       …………1分

      當(dāng)

                                                                  …………4分

      驗(yàn)證

                           …………5分

         (II)該商場(chǎng)預(yù)計(jì)銷售該商品的月利潤(rùn)為

      ,

                                                                  …………7分

      (舍去)……9分

      綜上5月份的月利潤(rùn)最大是3125元。                           …………12分

      21.解:(I)∵|OA1|=|OA2|=|OA3|=2,                             …………1分

      ∴外接圓C以原點(diǎn)O為圓心,線段OA1為半徑,故其方程為……3分

      ∴所求橢圓C1的方程是                            …………6分

         (II)直線PQ與圓C相切。

      證明:設(shè)

       

       

       

      ∴直線OQ的方程為                            …………8分

      因此,點(diǎn)Q的坐標(biāo)為

                                                                  …………10分

      綜上,當(dāng)2時(shí),OP⊥PQ,故直線PQ始終與圓C相切。        …………12分

      22.解:(I)由題意知:                         …………2分

      解得

                                               …………4分

         (II),

      當(dāng),                  …………6分

                                          …………8分

      故數(shù)列             …………10分

         (III)若

      從而,

                                 …………11分

      即數(shù)列                                         …………13分

                                   …………14分

       

       


      同步練習(xí)冊(cè)答案